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Abstract

As artificial intelligence (AI) systems become more sophisticated and are
increasingly used to make decisions that affect human lives, ensuring their
alignment with human values and preferences is of paramount importance.
One key aspect of AI alignment is addressing uncertainty, as AI systems that
are highly certain about the outcomes of their actions may be less likely
to make decisions in line with human values. In this paper, the role of
normative reasoning in addressing uncertainty in AI alignment is explored,
specifically examining how deontic logic can be used to guide the decision-
making process of AI systems. The paper illustrates the significance of taking
into account both normative reasoning and preference-based approaches in
order to ensure AI alignment. It is examined the potential of deontic logic,
a formal system that deals with rights and duties, to help AI systems better
understand and make decisions under uncertainty in a way that is consis-
tent with human preferences. The analysis has implications for the design
and development of AI systems that can make decisions that are ethically
responsible. In order to design and engineer ethical and legal reasoners and
responsible systems, Benzmüller, Parent and van der Torre introduced the
LogiKEy methodology, based on the semantical embedding of deontic logics
into classic higher-order logic. This paper considerably extends the LogiKEy
deontic logics and dataset using an algebraic approach, and develops a theory
of input/output operations for normative reasoning on uncertainty.
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1. Introduction

Ensuring that artificial intelligence (AI) systems are aligned with the
values and goals of their human creators, known as AI alignment, is crucial
as AI systems become more sophisticated and are used to make decisions
that affect human lives. One way to approach AI alignment is to consider
the following principles: the machine’s only objective is to maximize the
realization of human preferences, the machine is initially uncertain about
what those preferences are, and the ultimate source of information about
human preferences is human behavior [1]. The principles mentioned can
serve as valuable guidelines for designing and developing AI systems that
align with human values and goals.

Uncertainty can arise in various forms in AI systems, including incom-
plete or uncertain data, lack of knowledge about the environment, and the
complexity of the decision-making process [2]. Addressing uncertainty is
therefore an important aspect of AI alignment, as it helps to ensure that an
AI system has a clear understanding of the outcomes of its actions and is
able to make decisions that are aligned with the values and preferences of its
human creators. One way to address uncertainty in AI alignment is through
the use of normative reasoning, which involves the use of principles, values,
and moral theories to guide decision-making [1, 3].

One field of study highly relevant to AI alignment is deontic logic, a formal
system specifically designed to address rights and duties within normative
reasoning. Deontic logic can be used to guide the decision-making process of
AI systems in a way that is consistent with human preferences [4, 5]. This
can be particularly useful when it comes to understanding and managing
uncertainty [6, 7]. In this paper, the potential of deontic logic and norma-
tive reasoning to help address uncertainty in AI alignment is explored. The
analysis has implications for the design and development of AI systems that
are aligned with human values and goals and can make decisions that are
ethically responsible.

In this paper, an algebraic formal framework for normative reasoning in
uncertainty, inspired by input/output logic [8], is introduced. This framework
is based on a set of given norms - such as social, ethical, or legal norms -
and common conditional inference rules of conditional logic [9]. This logical
framework for normative reasoning incorporates conditional preferences and
employs the LogiKEy methodology. While the ultimate goal is to implement
and experiment with these normative theories in machines, the present paper
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lays the foundational groundwork for such future endeavors. Benzmüller,
Parent and van der Torre [10] introduced the LogiKEy framework for the
formalization and automation of new ethical reasoners, normative theories
and deontic logics. The LogiKEy framework uses higher-order logic (HOL)
as a metalogic to embed other logics. A logic embedded in HOL can thus be
tracked by automated theorem provers (ATP), interactive automated provers
(ITP) and HOL model finders. The LogiKEy methodology allows a user to
simultaneously combine and experiment with underlying logics (and their
combinations), ethico-legal domain theories, and concrete examples.

Earlier work presented semantical embedding of two traditions in deontic
logic in the LogiKEy framework, namely Åqvist’s dyadic deontic logic E [11]
and Makinson and van der Torre’s input/output (I/O) logic [12]. Subsequent
work provided the Isabelle/HOL dataset for the LogiKEy workbench [13].
This paper considerably extends the LogiKEy deontic logics and dataset
using an algebraic approach. In particular, it extends the theory of in-
put/output operations [8] and corresponding proof systems on top of Boolean
algebras and, more generally, abstract logics [14]. One advantage of building
I/O operations over Boolean algebras is that the I/O logic can be directly
embedded in HOL. Moreover, the adaptation of input/output logic to a wide
range of base logics is beneficial for AI systems. Having a large class of logics
available allows for accommodating the specific needs of AI systems.

The paper is structured as follows: Sections 2 and 3 introduce a new de-
ontic consequence relation for reasoning under uncertainty and provide the
soundness and completeness results of I/O operations for deriving permis-
sions and obligations on top of Boolean algebras. Section 4 shows how I/O
operations can be generalized over any abstract logic. Section 5 integrates
a conditional theory into input/output logic and shows why it is crucial to
consider both approaches based on norms and preferences when it comes to
decision-making in the realm of aligning AI with human values. Section 6
introduces semantical embedding of I/O logic into HOL, including sound-
ness and completeness (faithfulness). Section 7 discusses related work, and
Section 8 concludes the paper. Appendix A shows how the semantical em-
bedding described in Section 6 is implemented in the Isabelle/HOL proof
assistant. Some experiments are provided to show that this logic implemen-
tation enables interactive and automated reasoning. All the proofs are in
the appendices. Appendix B provides proofs relating to Sections 2 and 3,
Appendix C proofs relating to Section 5 and Appendix D proofs relating to
Section 6.

3



2. Permissive norms: input/output operations

Deontic logic is a branch of formal logic that deals with norms and values,
and the logical relationships between them. It is frequently used to represent
and reason about systems of moral norms and values, and to evaluate the
logical consistency and coherence of these systems [15, 16]. Obligations in
deontic logic are moral duties or legal requirements that must be fulfilled,
while permissions are moral or legal allowances or authorizations for an ac-
tion or state of affairs. There is a logical relationship between these two
types of norms, as fulfilling an obligation may be necessary to be granted a
permission, and exercising a permission may be necessary to fulfill an obli-
gation. This relationship can be represented using the “implies” operator.
However, the relationship between obligations and permissions is not always
straightforward and may involve conflicting or competing demands. Permis-
sions in deontic logic or normative systems can be classified in various ways,
such as based on their source or origin (e.g., legal, moral, practical), scope
or extent (e.g., global, local), or level of generality or specificity [17]. Four
specific types of permissions that are often distinguished are weak permis-
sions, which are derived from obligations and are the dual of obligations;
static permissions, which are derived from strong permissions or explicit per-
missive norms in a normative system; dynamic permissions, which guide the
legislator by describing the limits on what may be prohibited in a normative
system; and exemptions, which are exceptions to prohibitions in a normative
system [17, 18, 19]. The classification of permissions can be useful in eval-
uating the logical consistency and coherence of different norms and values,
and in determining the appropriate course of action in a given situation. In
this paper, a generic and abstract form of permission is considered by apply-
ing inference rules to a set of permissive norms. The relationship between
different concepts of permission and obligation is explored in a separate work
using subordination algebra and contact algebra [20, 21].

Normative systems that consider permission as primitive and define obli-
gation as a derived concept typically view permissions as more fundamental
or basic norms or values. In these systems, obligations are often defined in
terms of permissions, such that the fulfillment of an obligation may be neces-
sary in order to exercise a permission or to achieve a certain state of affairs.
For example, an obligation to act in the best interest of others may be derived
from a permission to pursue one’s own interests, or an obligation to respect
the rights of others may be derived from a permission to pursue one’s own
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interests or goals. This relationship between obligations and permissions can
be used to evaluate the consistency and coherence of different norms and
values within the system, and to determine the appropriate course of action
in a given situation [17]. This approach to norms and values may not be
specific to any particular category of permission or obligation, but rather
applies more generally to the way in which these concepts are understood
and related within the system.

2.1. Input/output logic

There are two main families of deontic logic: modal logic-based deontic
logics and norm-based deontic logics. Modal logic-based deontic logics draw
from the principles of modal logic, primarily engaging with the concepts of
necessity and possibility. One of the most well-known modal logic-based
deontic logics is standard deontic logic (SDL) [22]. Dyadic deontic logic
(DDL) introduces a conditional operator to represent conditional obligation
sentences dealing with norm violation, and it has been used to deal with
contrary-to-duty reasoning [23] and prima facie obligations. Hansson [24],
Åqvist [25], Kratzer [26], and, Carmo and Jones [27] are notable figures in
the development of DDL. On the other hand, norm-based deontic logic [28]
is a family of frameworks that analyze deontic modalities with reference to a
set of explicitly given norms, rather than with reference to a set of possible
worlds. The focus is on inferring which norms apply, given some input (e.g., a
fact) and a set of explicit conditional norms (a normative system). Examples
of norm-based deontic logics include input/output (I/O) logic, which uses
operational semantics based on the concept of detachment and manipulates
pairs of formulas rather than individual formulas [8], and Horty’s theory of
reasons [29], which is based on Reiter’s default logic [30].

Input/output logic was initially introduced by Makinson and van der
Torre [31] to study conditional norms viewed as relations between logical for-
mulas. I/O logic provides a formal framework for reasoning about normative
systems, which can be seen as sets of conditional obligations or permissions.
These systems are used in a wide range of fields, from legal systems [32]
and ethical frameworks [12] to automated decision-making processes [33] in
artificial intelligence. One major advantage of I/O logic is its flexibility and
clarity in modeling complex normative scenarios. It represents norms as pairs
of conditions (inputs) and their associated actions or states (outputs). This
allows for a clear, structured approach to representing norms, even when
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the norms might be interconnected or conflicting. For example, in a self-
driving car scenario, one conditional norm might be “if there is a pedestrian
in the crosswalk (input), the car should stop (output)”, while another might
be “if the traffic light is green (input), the car should proceed (output)”.
I/O logic provides tools for reasoning about what to do when these norms
conflict [34]. In this setting, the meaning of normative concepts is given in
terms of a set of procedures yielding outputs for inputs. Let NO denote a set
of obligatory norms and NP a set of permissive norms. The formal expres-
sion (a, x) ∈ NO means “given a, it is obligatory that x”, while the formal
expression (a, x) ∈ NP means “given a, it is permitted that x.” The formal
expression x ∈ out(NP , A) means “given normative system NP and input set
A (state of affairs), x (permission) is in the output”. The output operations
resemble inferences, where inputs need not be included among outputs, and
outputs need not be reusable as inputs [31]. The proof system of an I/O logic
is specified via a number of derivation rules acting on pairs (a, x) of formu-
las. Given a set N of pairs, (a, x) ∈ derivei(N) is written to say that (a, x)
can be derived from N using these rules. The term “input/output logic” is
used broadly to refer to a family of related systems such as simple-minded,
basic, and reusable systems [31, 35]. This section uses similar terminology,
and introduces some input/output systems for deriving permissions on top
of Boolean algebras. Each derivation system is closed under a set of rules,
including for instance the weakening of the output (WO) rule or the strength-
ening of the input (SI) rule. A bottom-up approach is used to characterize
different derivation systems. The AND rule, for the output, is absent in the
derivation systems presented in this section. In this section and the next,
the division of input/output operations is based on the common distinction
between possibility (3) and necessity (2) modal operators in modal logic.
The possibility operator is not closed under AND. In the paper, there is no
strong idea on whether the input/output operations of this section can or
cannot be used for obligation, or vice versa. It depends on the context and
application. Generally, the initial set of norms that mention either obligatory
NO or permissive NP norms provides a better guidance for the purpose of
the input/output systems in this paper.

The results in this section hold for any abstract logic, but Boolean alge-
bras are used as the main algebraic structures to prove lemmas and theorems.
One reason for using Boolean algebras is that they provide a more uniform
formal framework for the purposes of the paper. In Section 5, Boolean al-
gebras are used to model propositional logic and can be extended with pref-
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erence relations over valuation functions or possible states. In Section 6,
Boolean algebras form the basis of the semantical embedding for implemen-
tation in higher-order logic and proof assistants. Overall, the use of Boolean
algebras allows for a more algebraic and formal analysis of normative sys-
tems, and can provide a basis for the development of more powerful and
effective methods for reasoning about such systems. By considering multiple
layers of abstraction, it may be possible to gain a more comprehensive view
of the properties and behaviors of normative systems and to design systems
that are more adaptable and applicable to a wide range of contexts.

Definition 1 (Boolean algebra). A structure B = ⟨B,∧,∨,¬, 0, 1⟩ is a
Boolean algebra if and only if it satisfies the following identities:1

• x ∨ y ≈ y ∨ x, x ∧ y ≈ y ∧ x
• x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z, x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z
• x ∨ 0 ≈ x, x ∧ 1 ≈ x
• x ∨ ¬x ≈ 1, x ∧ ¬x ≈ 0
• x ∨ (y ∧ z) ≈ (x ∨ y) ∧ (x ∨ z), x ∧ (y ∨ z) ≈ (x ∧ y) ∨ (x ∧ z)

Definition 2 (Syntax). For a set of variables X, the set of Boolean terms
defined over X is denoted by Ter(X) as follows:

Ter(X) =
⋃

n∈N Tern(X)

where

Ter0(X) = X ∪ {0, 1}
Tern+1(X) = Tern(X) ∪ {a ∧ b, a ∨ b,¬a : a, b ∈ Tern(X)}.

Given a Boolean algebra B, the elements of Ter(B) are ordered as a ≤ b iff
a ∧ b =B a.

2 Since ≤ is antisymmetric, a ≤ b and b ≤ a imply a =B b.

Term algebras are a specific type of algebraic system that are used in the
study of formal languages and logical systems. Term algebras are used to
represent the syntactic structure of formal languages and to study the logical
properties of those languages [36].

1An equation t ≈ t
′
holds in an algebra A if its universal closure ∀x0...xnt ≈ t

′
is a

(first-order) sentence that is true in A.
2The symbol “=B” is used to express that both sides name the same object in B. The

elements of the variable set (B) that are represented by different letters are supposed to
be independent in the algebra (B) w.r.t. ≤.
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2.2. Deontic logic: a new consequence relation

Definition 3 (Upward-closed set). Given a Boolean algebra B, a set
A ⊆ Ter(B) is called upward-closed if it satisfies the following property:

For all x, y ∈ Ter(B), if x ≤ y and x ∈ A, then y ∈ A.

The least upward-closed set that includes A is denoted by Up(A). The Up
operator satisfies the following properties:

• A ⊆ Up(A) (Inclusion)
• A ⊆ B ⇒ Up(A) ⊆ Up(B) (Monotony)
• Up(A) = Up(Up(A)) (Idempotence)

An operator that satisfies these properties is called a closure operator.

The “Up” operator, for a given set A, sees all the elements that are in
a higher or equal position to the elements of A in terms of their ordering in
Boolean algebra. Unlike the propositional logic consequence relation (“Cn”)
operator, the “Up” operator is not closed under conjunction so that we do
not have a∧¬a ∈ Up(a,¬a). The Up operator is defined as the union of the
sets of all statements that follow from each individual member of the given
set, or equivalently as the union of the sets of all statements that follow from
the given set under the standard consequence relation (Cn):

Up(A) =
⋃
{Cn(a)|a ∈ A}

The following subsections provide motivation for the application of the Up
operator in normative reasoning under uncertainty.

2.3. Evaluative uncertainty

Uncertainty, an inherent part of human cognition, is of different types de-
pending on the nature of what is not known [37]. Probabilistic uncertainty,
one of the most widely recognized, pertains to situations where the outcome
is not deterministic but can be represented probabilistically [38]. For in-
stance, the outcome of a dice roll or the weather forecast for the next day,
which can be described by a set of possibilities each with a probability of oc-
currence. However, not all uncertainties are probabilistic. Non-probabilistic
uncertainty arises in situations where the possible outcomes or their likeli-
hoods cannot be clearly determined or quantified [39]. An example could be
the uncertainty regarding the potential impacts of a newly emerged virus,
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especially at its early stage of emergence when there isn’t enough data for
probabilistic assessments.

Beyond empirical uncertainty, which involves a lack of knowledge about
factual elements of the world, we can encounter other varieties [40]. Evalua-
tive uncertainty pertains to the difficulty of determining the value or worth
of different options or outcomes. For instance, should you prioritize job se-
curity or job satisfaction while choosing a career? Option uncertainty refers
to situations where one is unsure about the options that are available or that
will be available. For example, an investor might be uncertain about future
investment options due to unpredictable market conditions. Modal uncer-
tainty pertains to the uncertainties regarding different possible worlds or the
ways the world could be. For instance, contemplating the consequences of
decisions in a world where climate change was addressed proactively versus
one where it was ignored. This paper focuses on evaluative uncertainty.

Within evaluative uncertainty, we can discern two main types [40, 41].
Uncertainty due to value assessments represents the challenge of assigning
value to specific outcomes. To illustrate, even when a person knows the
complete specifications of two phones, they might struggle to decide which
is better because they are unsure whether to prioritize battery life, camera
quality, or brand reputation. Conversely, normative uncertainty refers to in-
decision about what ethical or moral principles to adhere to while making
decisions. An example could be a person facing a dilemma between helping
a friend in need, which aligns with the principle of beneficence, or maintain-
ing their own well-being and personal commitments, which is an exercise of
self-care and responsibility. The difference lies in the source of uncertainty,
whether it’s a problem of evaluating options or choosing between principles.
Uncertainty due to value assessments refers to uncertainty about the subjec-
tive evaluations and preferences that individuals have regarding the desirabil-
ity or value of different consequences or attributes. It involves uncertainty
about how to prioritize and evaluate the properties of a consequence based
on personal preferences. On the other hand, normative uncertainty relates
to uncertainty about normative facts or principles, encompassing uncertainty
about what is considered morally or ethically preferable.

Sections 2 and 3 explore input/output operations concerning normative
uncertainty. Meanwhile, Section 5 brings utility functions and preference re-
lations into the fold of a non-monotonic logical framework to confront evalu-
ative uncertainty [40]. A critical challenge in AI value learning emerges from
Stuart Armstrong’s no-free-lunch result [42], which posits that numerous po-
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tential utility functions can align with a specific dataset, making it nearly
impossible to pinpoint an exact model of human values [6]. Even the appli-
cation of Occam’s Razor, which favors the simplest solution, fails to alleviate
this predicament and could potentially lead AI systems astray. Represen-
tation Theorems, such as the Von Neumann-Morgenstern utility theorem,
offer some solace, yet they require an impractically extensive evaluation of
decisions. Moreover, relying solely on real-world human decisions overlooks
potential preferences in unobserved scenarios, further complicating value ex-
traction. For a detailed discussion, refer to “The Pointers Problem: Clar-
ifications/Variations” by Abram Demski. Therefor, normative uncertainty
often requires more nuanced philosophical deliberation and moral reasoning
beyond the scope of utility functions, highlighting the need for comprehensive
exploration and ethical discussions in addressing normative uncertainty.

2.4. Discursive input/output logic

In the original system of input/output logic [31], the Cn consequence
relation is used to define input/output operations. This paper proposes us-
ing a new consequence relation, Up, instead of Cn. The main idea of this
paper is to explore the possibilities of using Up in place of Cn for defining
input/output operations. The specific benefits of using the Up consequence
relation and how it can be applied in practice will be further discussed in the
following.

Consideration of multiple viewpoints The Up(A) operator does not
allow for the derivation of the conjunctive formula a ∧ b from the set {a, b}.
This means that the consequence relation is non-adjunctive, as it does not
allow for the combination of the two premises into a single conjunctive state-
ment [43]. Instead, each premise is treated separately and individually. Non-
adjunctive or discursive consequence relations can be seen as a way of dealing
with uncertainty, as they allow for the consideration of multiple viewpoints
and the possibility of conflicting premises. From the perspective of normative
uncertainty, the significance of non-adjunctivity becomes apparent. Norma-
tive uncertainty arises when there are uncertainties about how to apply or
prioritize different moral or ethical principles. The non-adjunctive nature of
the consequence relation becomes valuable in this context. It avoids attempt-
ing to merge diverse moral assessments into a single conjunction statement.
Instead, it treats each moral principle or norm independently, acknowledging
their individual merits and respecting the subjective nature of moral as-
sessments. By embedding multiple, possibly conflicting, ethical evaluations
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within a unified logical framework, we enable an AI system to deliberate over
these tensions—such as an autonomous vehicle making a decision between the
safety of pedestrians and that of its passengers—rather than merely following
a predefined ethical directive. In the subsequent discussion, we elucidate the
distinction between using Up and Cn in addressing normative conflicts and
handling uncertainty in inputs and outputs. Additionally, we delve into the
asymmetry between inputs and throughputs when aggregating viewpoints.

Viewpoints are complex The Up operator presents a unique chal-
lenge due to its non-compact nature, especially when dealing with logical
consequences arising from a set of sentences, such as A = {a1, (a1 ∧ a2),
(a1 ∧ a2 ∧ a3), ...}. The non-compactness of the Up operator is highlighted
with this set, which contains an uncountable number of elements. The Up
operator is incapable of performing (a finite) conjunction of these elements,
thereby rendering it not finitely axiomatizable. The use of Up operator can
be related to uncertainty in the sense that it allows for the representation
and reasoning about a set of propositions that are not fully captured by
a finite set of axioms and is not deductively axiomatizable. In situations
where values are unclear or open to interpretation, evaluative (normative)
uncertainty emerges, requiring individuals to engage in subjective assess-
ments and the construction of values. Yudkowsky’s “Hidden Complexity of
Wishes” suggests that our values are more complicated than they seem. It
warns against oversimplifying goals in systems like AI. In this context, the
non-compactness of the Up operator highlights the challenges in aligning AI
with our true values and viewpoints.

Example 1. Let’s consider an AI system responsible for managing and mod-
erating an online social platform. The AI’s purpose is to create an environ-
ment that encourages respectful dialogue and reduces harm. Here, we can
represent different ethical and community standards as atomic propositions:
a1 could represent respect for free speech, a2 might stand for zero-tolerance
for hate speech, a3 might be about protection of privacy, a4 might be about
preventing misinformation, and so on. However, what constitutes “harm”
or “respectful dialogue” might evolve with society’s moral progress. For in-
stance, certain behaviors or words that were considered acceptable a few years
ago might be regarded as offensive or harmful now, and this necessitates
an update in the AI’s understanding and enforcement of community stan-
dards. In this context, we can define a set of propositions Y = {a1, (a1 ∧ a2),
(a1 ∧ a2 ∧ a3), . . .}, with each combination representing a different stage of
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moral progress and the corresponding changes in the enforcement of commu-
nity standards. To deal with this evaluative uncertainty due to the progress
in societal values, the AI system would need to continuously learn, adapt,
and update its understanding of what constitutes harm, respectful dialogue,
privacy, and misinformation, among other factors. It would also need to
consider how to balance these values when they conflict with one another in
specific situations. Thus, the challenge here is not only about accumulating
more factual knowledge but also about understanding and adapting to evolving
societal values and norms.

Definition 4 (Semantics). In input/output logic, the main semantic con-
struct for normative propositions is the output operation, which represents
the set of normative propositions related to a normative system N , regard-
ing state of affairs A, namely out(N,A). A normative system N denotes
a set of norms (a, x) in which the body and head are Boolean terms. Let
N(A) = {x | (a, x) ∈ N for some a ∈ A}. In a Boolean algebra B, for
X ⊆ Ter(B), the set Eq(X) = {x ∈ Ter(B)|∃y ∈ X, x = y} is defined.3 A
set V is saturated in a Boolean algebra B if and only if, for all elements a and
b in B, if a ∈ V and b ≥ a, then b ∈ V , and if a∨b ∈ V , then a ∈ V or b ∈ V .
Given a Boolean algebra B, a normative system N ⊆ Ter(B)× Ter(B) and
an input set A ⊆ Ter(B), I/O Boolean operations are defined as follows:

Zero Boolean I/O operation:

outB0 (N,A) = Eq(N(Eq(A)))

outBR(N,A) = Eq(N(A)) outBL(N,A) = N(Eq(A))

Simple-I Boolean I/O operation:

outBI (N,A) = Eq(N(Up(A)))

Simple-II Boolean I/O operation:

outBII(N,A) = Up(N(Eq(A)))

3Sometimes Up(a, b, ...)(Eq(a, b, ...)) is written instead of Up({a, b, ...})(Eq({a, b, ...}))
and out(N, a) (derive(N, a)) is written instead of out(N, {a}) (derive(N, {a})).
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Simple-minded Boolean I/O operation:

outB1 (N,A) = Up(N(Up(A)))

Basic Boolean I/O operation:

outB2 (N,A) =
⋂

{Up(N(V )), A ⊆ V, V is saturated}

Reusable Boolean I/O operation:

outB3 (N,A) =
⋂

{Up(N(V )), A ⊆ V = Up(V ) ⊇ N(V )}

Put outBi (N) = {(A, x) : x ∈ outBi (N,A)}.

We turn to the proof theory. A derivation of a pair (a, x) from N , given a
set X of rules, is understood to be a tree with (a, x) at the root, each non-leaf
node related to its immediate parents by the inverse of a rule in X, and each
leaf node an element of N .

Definition 5 (Proof system). Given a Boolean algebra B and a normative
system N ⊆ Ter(B) × Ter(B), it is defined that (a, x) ∈ deriveBi (N) if
and only if (a, x) is derivable from N using EQI,EQO, SI,WO,OR, T as
follows:4

deriveBi Rules
deriveBR {EQO}
deriveBL {EQI}
deriveB0 {EQI, EQO}
deriveBI {SI, EQO}
deriveBII {WO, EQI}
deriveB1 {SI, WO}
deriveB2 {SI, WO, OR}
deriveB3 {SI, WO, T}

(a, x) x =B y
EQO

(a, y)

(a, x) a =B b
EQI

(b, x)

(a, x) b ≤ a
SI

(b, x)

(a, x) (x, y)
T

(a, y)

(a, x) (b, x)
OR

(a ∨ b, x)

(a, x) x ≤ y
WO

(a, y)

Given a set of A ⊆ Ter(B), then (A, x) ∈ deriveBi (N) whenever (a, x) ∈
deriveBi (N) for some a ∈ A. Put deriveBi (N,A) = {x : (A, x) ∈ deriveBi (N)}.

4EQI stands for equivalence of the input, EQO for equivalence of the output, and T
for transitivity.
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Theorem 1 (Soundness and completeness). outBi (N) = deriveBi (N).

Example 2. For the conditionals N = {(1, a), (a, x)} and the input set
A = {} we have outBI (N,A) = {}, and for the input set A = {a} we have
outBII(N,A) = Up(x).

Example 3. For the conditionals N = {(a, x), (b, x), (x, y)} and the input
set A = {a ∨ b} we have outB1 (N,A) = {}, outB2 (N,A) = Up(x), and
outB3 (N,A) = Up(x, y). Moreover, for the input set A = {a, b} we have
outB1 (N,A) = outB2 (N,A) = Up(x).

Example 4. For the conditionals N = {(1, a), (a, x), (¬a,¬x), (b, y)} and
the input set A = {¬a}, since V = Up(¬a,¬x, a) is the smallest set such
that A ⊆ V and V ⊇ N(V ), we have outB3 (N,A) = Up(a, x,¬x). Regarding
the proof system, the following proof tree demonstrates why for instance a ∈
deriveB3 (N,A).

(¬a,¬x) ¬x ≤ 1
WO

(¬a, 1) (1, a)
T

(¬a, a)
Uncertainty in inputs and outputs. The uncertainty here is not necessary re-
lated to norm conflict. For example, for the normative set N = {(a, x), (b, x),
(a ∧ b,¬x)}, the output of simple-minded in the original input/output op-
eration for the input set A = {a, b} is out1(N,A) = Cn(N(Cn(A))) =
Cn(x,¬x). In contrast, in the version defined in this paper, since the in-
put/output operation does not join the input data, the output is
Up(N(Up(A))) = Up(x), indicating that there is no conflict in the output.
The uncertainty here can be related to both inputs and outputs in both given
intuition. For instance, non-adjunctive input handling can be used to handle
uncertainty in situations where there are conflicting perspectives or opinions
on a given issue. For example, in the normative systems N = {(a, x), (¬a, x),
(⊥,⊥)} and for the input set A = {a,¬a}, the output is Up(x). The non-
axiomatizability of output or normative propositions like our obligations and
permissions is motivated as a result of normative uncertainty and moral in-
sights.5 In the context of artificial intelligence and AI alignment, this idea

5The non-axiomatizability of the Up operator and its application to moral insights
was pointed out by Bas van Fraassen to me in his blog post. I would like to express my
gratitude to him for this contribution. See: Deontic Logic and Consequence Relations
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of normative uncertainty can have significant implications. A machine that
assumes it has a complete understanding of objective moral truth will pur-
sue it single-mindedly, ignoring any objections or concerns from humans.
On the other hand, a machine that is uncertain about the true moral ob-
jective will exhibit a kind of humility and may defer to human preferences
in its actions [1, 44]. This allows for a greater consideration of multiple
viewpoints and the possibility of conflicting moral principles. Input/output
operations consider both normative uncertainty (uncertainty about value it-
self) and empirical uncertainty (uncertainty about the empirical world) in a
comprehensive manner [45].

The inference rules SI, WO, OR, AND, and CT (see Defintion 6) are
motivated in the original system [31]. Here there are additional practical
applications that motivate the use of the inference rules T, EQO, and EQI.
The transitivity rule (T) is fundamental to logical reasoning, enabling agents
to derive conclusions from chains of implications. The T rule, which facil-
itates logical connections between implications, is not without criticism in
nonmonotonic reasoning contexts. Such critiques often advocate for the use
of CT over T, as underscored by cases like Pearl’s penguin conundrum [46].
In contrast, the CT rule necessitates aggregating premises, making T more
streamlined in contexts where viewpoint aggregation isn’t preferred. For ex-
ample, from the premises (a,¬a) and (⊥,⊥), one can infer (a,⊥) using the
CT rule. However, this derivation might be less compelling when aggregating
a and ¬a as distinct viewpoints. In the context of non-monotonicity, Sec-
tion 5 integrates preference relations into normative reasoning. Moving on to
the rule EQO, it allows for substitutions between logically equivalent terms
within an inference. EQO addresses a distinct aspect of logical reasoning:
maintaining coherence when terms are logically equivalent but not identical.
However, it’s essential to recognize that EQO is implied by the more compre-
hensive WO rule in I/O logic. Thus, the rationale for adopting EQO should
articulate its relevance when WO is not desirable or required [47]. Similarly,
the inference rule EQI, although weaker than SI, has its own usefulness, es-
pecially when the broader implications of SI are not required or could lead
to undesired conclusions [48]. Regarding the introduction of new “derive”
rules, EQO and T indeed appear in the text but are not entirely novel. T
rule has a brief mention in Makinson and van der Torre [31], while EQO has
been discussed in literature such as Straßer, Beirlaen, and van de Putte’s
work [49], and Parent and van der Torre’s paper [50].
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3. Obligatory norms: input/output operations

This section adds the AND and cumulative transitivity (CT) rules to the
derivation systems introduced, with the aim of recovering the derivation sys-
tems introduced by Makinson and van der Torre [31] for deriving obligations.

Definition 6 (Proof system). Given a Boolean algebra B and a normative
system N ⊆ Ter(B)× Ter(B), it is defined that (a, x) ∈ deriveXi (N) if and
only if (a, x) is derivable from N using EQO,EQI, SI,WO,OR,AND,CT
as follows:

deriveXi Rules
deriveAND

II {WO, EQI, AND}
deriveAND

1 {SI, WO, AND}
deriveAND

2 {SI, WO, OR, AND}
deriveCT

I {SI, EQO, CT}
deriveCT

II {WO, EQI, CT}
deriveCT

1 {SI, WO, CT}
deriveCT,AND

1 {SI, WO, CT, AND}

(a, x) (a, y)
AND

(a, x ∧ y)

(a, x) (a ∧ x, y)
CT

(a, y)

Given a set of A ⊆ Ter(B), (A, x) ∈ deriveXi (N) whenever (a, x) ∈
deriveXi (N) for some a ∈ A. Put deriveXi (N,A) = {x : (A, x) ∈ deriveXi (N)}.

Makinson and van der Torre [31] noticed that in some cases, the order
of application of two derivation rules is reversible. For instance, any appli-
cation of AND followed by WO (SI) may be replaced by one in which WO
(SI) is followed by AND. Based on this observation, new output operations
are defined by, for example, rearranging the derivation (a, x) in the proof
system {SI,WO,AND} such that the AND rule applies only at the end.
The {SI,WO} system has been characterized as the simple-minded I/O op-
eration outB1 . Now by applying (finite) successive rounds of AND on top
of outB1 , a new output operation is defined that characterizes the proof sys-
tem {SI,WO,AND}. Three kinds of such output operations are defined—
outAND

i , outCT
i , and outCT,AND

i —that can characterize the proof systems
introduced in Definition 6. Note that there are some non-reversible orders,
such as the WO rule followed by the OR rule, for which no transformation
appears to be available.
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Definition 7 (Semantics outAND
i ). Given a Boolean algebra B, a norma-

tive system N ⊆ Ter(B)× Ter(B) and an input set A ⊆ Ter(B), the AND
operation is defined as follows:

outAND0

i (N,A) = outBi (N,A)

outANDn+1

i (N,A) = outANDn

i (N,A) ∪
{y ∧ z : y, z ∈ outANDn

i (N, {a}), a ∈ A}
outAND

i (N,A) =
⋃

n∈N out
ANDn

i (N,A)

Put outAND
i (N) = {(A, x) : x ∈ outAND

i (N,A)}.

Definition 8 (Semantics outCT
i ). Given a Boolean algebra B, a normative

system N ⊆ Ter(B)× Ter(B) and an input set A ⊆ Ter(B), the CT opera-
tion is defined as follows:

outCT 0

i (N,A) = outBi (N,A)

outCTn+1

i (N,A) = outCTn

i (N,A) ∪
{x : y ∈ outCTn

i (N, {a}) andx ∈ outBi (N, {a ∧ y}), a ∈ A}
outCT

i (N,A) =
⋃

n∈N out
CTn

i (N,A)

Put outCT
i (N) = {(A, x) : x ∈ outCT

i (N,A)}.

Example 5. For the conditionals N = {(a, b), (a, c), (a ∧ b ∧ c, d)} and the
input set A = {a} we have:

• outB1 (N,A) = Up(b, c) and therefore outCT 0

1 (N,A) = Up(b, c).
• Similarly, outCT 0

1 (N, a ∧ b) = outCT 0

1 (N, a ∧ c) = outCT 0

1 (N,A).
• Now, outCT 1

1 (N, a) = Up(b, c)∪outB1 (N, a∧b)∪outB1 (N, a∧c) = Up(b, c).
• Also, outCT 2

1 (N, a) = Up(b, c)∪outB1 (N, a∧b)∪outB1 (N, a∧c) = Up(b, c).
• So, outCT

1 (N, a) = Up(b, c).

Definition 9 (Semantics outCT,AND
i ). Given a Boolean algebra B, a nor-

mative system N ⊆ Ter(B) × Ter(B) and an input set A ⊆ Ter(B), the
CT,AND operation is defined as follows:

outCT,AND0

i (N,A) = outCT
i (N,A)

outCT,ANDn+1

i (N,A) = outCT,ANDn

i (N,A) ∪
{y ∧ z : y, z ∈ outCT,ANDn

i (N, {a}), a ∈ A}
outCT,AND

i (N,A) =
⋃

n∈N out
CT,ANDn

i (N,A)

Put outCT,AND
i (N) = {(A, x) : x ∈ outCT,AND

i (N,A)}.
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Theorem 2. Given a Boolean algebra B, for every normative system
N ⊆ Ter(B)× Ter(B) we have outAND

i (N) = deriveAND
i (N), i ∈ {II, 1, 2};

outCT
i (N) = deriveCT

i (N), i ∈ {I, II, 1}; and outCT,AND
1 (N) = deriveCT,AND

1 (N).

Similarly, it is possible to define the outOR
i (N) operation and characterize

some other proof systems:

deriveXi Rules
deriveOR

I {SI, EQO, OR}
deriveCT,OR

I {SI, EQO, CT, OR}
deriveCT,OR

1 {SI, WO, CT, OR}
deriveCT,OR,AND

1 {SI, WO, CT, OR, AND}

Makinson and van der Torre [31] introduced four I/O systems, based on
the same inference rules used in deriveAND

1 , deriveAND
2 (or deriveOR,AND

1 ),
deriveCT,AND

1 , and deriveCT,OR,AND
1 , for reasoning about obligatory norms.

These systems also include a rule for deriving tautologies. It is important
to note that the derivation systems defined here, derive(N,A) for a non-
singleton set A, differ from the original system presented in their work [31].
In their work, derive(N,A) is for some conjunction (

∧
ai) of elements in A.

In our system, we do not reason conjunctively with inputs:

derive(N,A) = {x : (a, x) ∈ derive(N) for some a ∈ A}

Asymmetry of inputs and throughputs. In this paper, an asymmetry is intro-
duced in the handling of inputs and throughputs (i.e., processed inputs) that
does not exist in the original systems. For example, consider the original
handling of a premise set N = {(⊤, a), (⊤, c), (a ∧ c, b)} and A = {⊤}, and
N ′ = {(a ∧ c, b)} with A = {a, c}. In both cases, b will be an output in the
original reusable I/O system, since whether a and c are throughputs or direct
inputs does not affect the triggering of (a∧c, b). In contrast, in the approach
presented in this paper (with conjunction), i.e., deriveCT,AND

1 , the two cases
are treated differently because throughputs are closed under conjunction, but
inputs are not. In this approach, the handling of inputs and throughputs is
asymmetrical, meaning that inputs and throughputs are treated differently.
This asymmetry allows the approach to consider the potential consequences
of different actions or events in a more systematic way. For example, if a and
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c are throughputs (i.e., they have already been processed by the system),
they will be closed under conjunction, meaning that they will be combined
or linked together. In contrast, if a and c are inputs (i.e., they have not yet
been processed by the system), they will not be closed under conjunction and
will be treated separately. This asymmetry allows the approach to consider
the potential consequences of different actions or events and to make more
informed decisions about which actions or events are most appropriate in a
given situation. Suppose we have an AI system that has been programmed
to provide users with information they request. The inputs in this case could
be various requests from users, say, user A asks for the fastest route to a lo-
cation, while user B requests the most scenic route to the same location. The
system will treat these inputs separately and will not combine them, since
they reflect distinct individual preferences. On the other hand, consider the
outputs or “throughputs” of this system which are the recommendations it
generates based on its normative guidelines and the user’s request. Let’s say
these guidelines include “respecting user’s privacy” and “promoting environ-
mental sustainability.” When user A asks for the fastest route, the system
generates an output, while also considering the throughput of “respecting
user’s privacy” - it doesn’t share user A’s location with other users. When
user B asks for the most scenic route, it generates another output while
considering the throughput of “promoting environmental sustainability” - it
selects a route that involves less carbon emission. In this situation, these
throughputs are closed under conjunction. This means that both of these
principles can coexist in the system’s operations and both are considered
together in generating future outputs, thus demonstrating the conjunction
of norms within the system’s operation. This approach of treating inputs
and throughputs differently (asymmetrically) allows the AI system to bal-
ance respecting individual user requests and overarching ethical norms. This
asymmetry represents a philosophical approach to AI alignment, where bal-
ancing individual preferences entails evaluating disparate actions as distinct
perspectives rather than amalgamating them, in alignment with community
or societal norms.

4. Input/output operations over abstract logics

An abstract logic [14] is a pair A = ⟨L, C⟩ where L = ⟨L, ...⟩ is an algebra
and C is a closure operator, defined on the power set of its universe, that
means that for all A,B ⊆ L:
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• A ⊆ C(A)
• A ⊆ B ⇒ C(A) ⊆ C(B)
• C(A) = C(C(A))
The elements of an abstract logic can be ordered as a ≤ b if and only if

b ∈ C({a}).6 Without loss of generality, the algebra of formulas (or terms in
the algebraic context) is used where Fm(X) = ⟨Fm(X), ...⟩ for a set of fixed
variables X. Similar to Boolean algebras, the Eq and Up operators can be
defined for A ⊆ Fm(X).

Definition 10 (Semantics). Given an abstract logic A = ⟨Fm(X), C⟩, a
normative system N ⊆ Fm(X)×Fm(X) and an input set A ⊆ Fm(X), the
I/O operations are defined as follows:

• outA0 (N,A) = Eq(N(Eq(A)))
• outAI (N,A) = Eq(N(Up(A)))
• outAII(N,A) = Up(N(Eq(A)))
• outA1 (N,A) = Up(N(Up(A)))
• outA2 (N,A) =

⋂
{Up(N(V )), A ⊆ V, V is saturated}7

• outA3 (N,A) =
⋂
{Up(N(V )), A ⊆ V = Up(V ) ⊇ N(V )}

Put outAi (N) = {(A, x) : x ∈ outAi (N,A)}.

Definition 11 (Proof system). Given an abstract logic A = ⟨Fm(X), C⟩
and a normative system N ⊆ Fm(X) × Fm(X), it is defined that (a, x) ∈
deriveAi (N) if and only if (a, x) is derivable from N using the rules
{EQI,EQO}, {SI,EQO}, {WO,EQI}, {SI,WO}, {SI,WO,OR} and
{SI,WO, T} for i ∈ {0, I, II, 1, 2, 3} in turn. Given a set of A ⊆ Fm(X),
(A, x) ∈ deriveAi (N) whenever (a, x) ∈ deriveAi (N) for some a ∈ A. Put
deriveAi (N,A) = {x : (A, x) ∈ deriveAi (N)}.

Theorem 3 (Soundness and completeness). outAi (N) = deriveAi (N).

A logical system L = ⟨L,⊢L⟩ straightforwardly provides an equivalent
abstract logic ⟨FmL, C⊢L

⟩. Therefore, an I/O framework can be built over

6a =A b if and only if a ≤ b and b ≤ a.
7For this case, the abstract logic A = ⟨Fm(X), C⟩ should include ∨, that is a binary

operation symbol, either primitive or defined by a term, and we then have a ∨ b, b ∨ a ∈
C({a}) (∨-Introduction) and if c ∈ C({a}) ∩ C({b}) then c ∈ C(a ∨ b) and c ∈ C(b ∨ a)
(∨-Elimination).
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different types of logics including first-order logic, simple type theory, de-
scription logic, as well as different kinds of modal logics that are expressive
for intentional concepts such as belief and time.

Example 6. In a modal logic system KT, for the conditionals N = {(p,2q),
(q, r), (s, t)} and the input set A = {p}, we have outKT

3 (N,A) = Up(2q, r).
The reflexivity axiom (T), 2q → q, guarantees that r can be detached, as
V = Up(p,2q, r) is the smallest set that satisfies both A ⊆ V and V ⊇ N(V ).

Moreover, other rules such as AND and CT can be added to the systems
in the same way as in Section 3.

Theorem 4. For a normative system N , every outBi (N), and outAi (N) op-
eration is a closure operator.

Nested input/output operations. Based on Theorem 4 and the results of
building input/output operations on top of any abstract logic, it is possi-
ble to define nested input/output (I/O) operations. For any N ⊆ Ter(B)×
Ter(B) and M ⊆ (Ter(B) × Ter(B)) × (Ter(B) × Ter(B)), the operation
outAj (M, outBi (N)) can be defined because outBi is a closure operator and in
the abstract logic A we can take L = N ×N and C = outBi . In the abstract
logic A, this operation corresponds to deriveAj (M,deriveBi (N)). Similarly, it
is possible to define nested operations of the form outAj (M, outAi (N)) for the
abstract logic A. Nested input/output (I/O) operations can be useful for
combining regulative and constitutive norms [51].

Flexibility in AI alignment through input/output operations. In the sphere
of AI alignment, creating a versatile framework of input/output operations
applicable across various logical systems offers the distinct advantage of flexi-
bility. This model moves away from the conventional notion of restricting AI
systems to a single logical system and instead propounds a more adaptive and
context-driven approach. Under this framework, the decision-making process
of an AI system is no longer dictated by a fixed logical system. Instead, it
can tap into a multitude of logical systems to better navigate the complexity
and nuances of a given situation. For instance, in an ethical dilemma, the
AI can leverage classical logic for its strong deductive power, or intuition-
istic logic when there is incomplete information, each bringing a different
perspective to the problem at hand. This open-ended structure paves the
way for a more holistic decision-making process. Depending on the scenario,
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an AI system can integrate diverse logical systems, whether it’s dealing with
moral questions, making risk assessments, or solving optimization problems.
This approach seeks to expand the breadth of the AI’s decision-making ca-
pabilities, aiming to produce decisions that are more robust and considered.
Moreover, this model allows the AI system to adjust its logic based on the
context and nature of the decision-making scenario. For example, in the
fast-paced world of cybersecurity, the system could leverage classical logic
to enforce stringent security measures but might switch to probabilistic logic
when assessing the risk of potential threats. However, it’s essential to address
the potential complexities and uncertainties, especially when multiple logics
might be applicable to a given situation. In conclusion, fostering an adapt-
able input/output operations model in AI alignment lays the groundwork
for a dynamic decision-making engine. It accommodates a diverse range of
logical systems, enhancing the AI system’s flexibility, adaptability, and re-
sponsiveness to evolving scenarios. The system’s capacity to adjust its logic
according to the changing circumstances becomes its key strength, making
it an indispensable tool in complex, evolving contexts.

5. Synthesizing normative reasoning and preferences

Input/output logic was originally developed on top of classical proposi-
tional logic [31]. This section demonstrates that the extension of proposi-
tional logic with a set of conditional norms is both sound and complete in re-
lation to the class of Boolean algebras where the corresponding input/output
operation is valid. The language of classical propositional logic consists of
the connectives LC = {∧,∨,¬,⊤,⊥}. Let X be a set of variables; as usual
the set of formulas is defined over X and referred to as Fm(X).8 The algebra
of formulas over X is a Boolean algebra as follows:

Fm(X) = ⟨Fm(X),∧Fm(X),∨Fm(X),¬Fm(X),⊤Fm(X),⊥Fm(X)⟩

where ∧Fm(X)(φ, ψ) = (φ∧ψ), ∨Fm(X)(φ, ψ) = (φ∨ψ), ¬Fm(X)(φ) = ¬φ,
⊤Fm(X) = ⊤, and⊥Fm(X) = ⊥. Let φ ⊢C ψ if and only if φ ≤ ψ, and φ ⊣⊢C ϕ
if and only if φ ≤ ψ and ψ ≤ φ. Γ ⊢C ψ if and only if there is a finite set
{γ1, . . . , γn} ⊆ Γ for which (γ1 ∧ γ2 ∧ . . . ∧ γn) ⊢C ψ.

8For the precise definition, the auxiliary symbols brackets ), ( are used. Apart from the
use of brackets, the formulas over X are Boolean terms over X: Ter(X).
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Definition 12. Let N ⊆ Fm(X)×Fm(X) where X is a set of propositional

variables. It is defined that (φ, ψ) ∈ derive
Fm(X)
i (N) if and only if (φ, ψ) is

derivable from N using EQO,EQI, SI,WO,OR, T as follows:

derive
Fm(X)
i Rules

derive
Fm(X)
R {EQO}

derive
Fm(X)
L {EQI}

derive
Fm(X)
0 {EQI, EQO}

derive
Fm(X)
I {SI, EQO}

derive
Fm(X)
II {WO, EQI}

derive
Fm(X)
1 {SI, WO}

derive
Fm(X)
2 {SI, WO, OR}

derive
Fm(X)
3 {SI, WO, T}

(φ, ψ) ψ ⊣⊢C ϕ
EQO

(φ, ϕ)

(φ, ψ) φ ⊣⊢C ϕ
EQI

(ϕ, ψ)

(φ, ψ) ϕ ⊢C φ
SI

(ϕ, ψ)

(φ, ψ) (ψ, ϕ)
T

(φ, ϕ)

(φ, ψ) (ϕ, ψ)
OR

(φ ∨ ϕ, ψ)

(φ, ψ) ψ ⊢C ϕ
WO

(φ, ϕ)

It is defined that (Γ, ψ) ∈ derive
Fm(X)
i (N) if (φ, ψ) ∈ derive

Fm(X)
i (N)

for some φ ∈ Γ ⊆ Fm(X). Put derive
Fm(X)
i (N,Γ ) = {ψ : (Γ, ψ) ∈

derive
Fm(X)
i (N)}.

Example 7. For the conditionals N = {(⊤, φ), (φ, ψ), (ψ, γ), (γ,¬φ)} and

the input set A = {γ}, we have out
Fm(X)
3 (N,A) = Up(φ, ψ, γ,¬φ).

Given ⟨Fm(X),⊢C⟩, let B be a Boolean algebra and X be a set of propo-
sitional variables. A valuation on B is a function from X into the universe of
B. Any valuation on B can be extended in a unique way to a homomorphism
from the algebra Fm(X) into B. A valuation V on B satisfies a formula φ if
V (φ) = 1B, and it satisfies a set of formulas Γ if V (γ) = 1B for all γ ∈ Γ [52].

Definition 13. For any Boolean algebra B, the consequence relation ⊨B can
be defined as follows:

Γ ⊨B φ if and only if for any valuation on B that V (Γ ) = 1B
then V (φ) = 1B.

Definition 14. Let BA be the class of all Boolean algebras. The conse-
quence relation ⊨BA can be defined as follows:

Γ ⊨BA φ if and only if for any Boolean algebra B, Γ ⊨B φ.
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Theorem 5. For every set of formulas Γ and every formula φ,

Γ ⊨BA φ if and only if Γ ⊢C φ.

Theorem 6. Let X be a set of propositional variables and N ⊆
Fm(X) × Fm(X). For a given Boolean algebra B and a valuation V on
B, it is defined that NV = {(V (φ), V (ψ))|(φ, ψ) ∈ N}. We have

(φ, ψ) ∈ derive
Fm(X)
i (N)

if and only if

V (ψ) ∈ outBi (N
V , {V (φ)}) for every B ∈ BA and valuation V .

The theorem can be extended for arbitrary input sets Γ ⊆ Fm(X).

Suppose that (Γ, ψ) ∈ derive
Fm(X)
i (N), then (φ, ψ) ∈ derive

Fm(X)
i (N) for

φ ∈ Γ . As above, we have V (ψ) ∈ outBi (N
V , {V (φ)}) for every B ∈ BA

and valuation V , so that by definition of outBi , it can be said that V (ψ) ∈
outBi (N

V , {V (φ)|V (φ) ∈ V (Γ )}) for every B ∈ BA and valuation V .

Theorem 7. Let X be a set of propositional variables and N ⊆
Fm(X) × Fm(X). For a given Boolean algebra B and a valuation V on
B, it is defined that NV = {(V (φ), V (ψ))|(φ, ψ) ∈ N}. We have

(φ, ψ) ∈ deriveAND
i (N)

if and only if

V (ψ) ∈ outAND
i (NV , {V (φ)}) for every B ∈ BA and valuation V .

5.1. Consistency check

Constraints can be added to the derivation systems such that the output
set of formulas is consistent with the proposed constraint. For example, one
constraint that could be added to the derivation system in the context of
AI alignment is a constraint that ensures that the AI system only generates
output formulas that are consistent with certain moral principles, such as the
principle of non-maleficence or the principle of autonomy. By adding such a
constraint, the AI system can be made to prioritize the importance of these
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principles in its decision-making processes, and thus helps to align the AI
system with human moral values.

Definition 15. Let X be a set of propositional variables and N ⊆
Fm(X) × Fm(X). Given the constraint Con that is a set of formulas
Con ⊆ Fm(X), it is defined that (φ, ψ) ∈ deriveCon

i (N) if and only if

(φ, ψ) ∈ derive
Fm(X)
i (N) and Con, ψ ⊬C ⊥.

Given a set of Γ ⊆ Fm(X), it is defined that (Γ, ψ) ∈ deriveCon
i (N) if

(φ, ψ) ∈ deriveCon
i (N) for some φ ∈ Γ .

Theorem 8. Let X be a set of propositional variables, N ⊆
Fm(X) × Fm(X), and Con ⊆ Fm(X). For a given Boolean algebra B
and a valuation V on B, it is defined that NV = {(V (φ), V (ψ))|(φ, ψ) ∈ N}.
We have

(φ, ψ) ∈ deriveCon
i (N)

if and only if

V (ψ) ∈ outBi (N
V , {V (φ)}) for every B ∈ BA and valuation V

and

for some B ∈ BA, there is a valuation V such that
∀δ ∈ Con, V (δ ∧ ψ) = 1B.

Reducing norm sets. The idea of pruning the set of norms is explored in
constrained input/output logic [34]. The concept involves reducing the set of
norms to a level just below the point where it becomes excessive, and examin-
ing the outcome that follows. This is accomplished by identifying the largest
subsets of norms, denoted as N

′ ⊆ N , where the output out(N
′
, A) remains

consistent. These subsets are referred to as the maxfamily of A, while the
corresponding outputs out(N

′
, A) form the outfamily of A. For example, con-

sider the conditionals N = {(⊤, φ), (¬φ, ψ), (φ,¬ψ)}. The maxfamily of A =
{¬φ} in this case is {{(⊤, φ), (¬φ, ψ)}, {(⊤, φ), (φ,¬ψ)}, {(¬φ, ψ), (φ,¬ψ)}},
while the outfamily of A is {Cn(φ, ψ), Cn(φ,¬ψ), Cn(ψ)}. Therefore, em-
ploying a skeptical approach, we can derive Cn(φ∨ψ), and adopting a cred-
ulous stance leads us to derive Cn(⊥) [35]. In our approach, when Con = {},
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we have deriveCon
i (N) = derive

Fm(X)
i (N) in this example. Although this ap-

proach might appear simpler than constrained input/output logic, it aims to
lessen the focus on the intricate interactions of norms. The constraints here
are pruning the set of norms based on the valuation functions and their asso-
ciated models. This reduction paves the way for introducing more intricate
concepts, such as preferences, into the I/O logic framework in the subsequent
sections.

5.2. Preferences: an AI alignment outline

In summary, the principles of AI alignment proposed with Russell [1]
involve ensuring that the objectives and behaviors of artificial intelligence
systems are aligned with the preferences and values of humans. This may
involve considering the uncertainty that AI systems may have about what
those preferences and values are, and using human behavior as a guide for
determining and adapting to those preferences and values over time. Human
preferences can be understood in several different senses, depending on the
context in which they are used [53]:

• In economic and decision-theoretic contexts, preferences typically refer
to an individual’s or an AI system’s ranking or ordering of different
alternatives or options, based on their relative desirability or utility.
For example, an individual might have a preference for a particular
brand of coffee over others, or an AI system might have a preference
for a particular course of action over others, based on the expected
outcomes or consequences of each option. This preference is closely
linked to uncertainty arising from value assessments.

• In moral or normative contexts, preferences may refer to an individual’s
or an AI system’s values, goals, or principles, which guide their decision-
making and determine the acceptable or desirable outcomes or actions
in a given context. For example, an individual might have a preference
for fairness or equality, or an AI system might have a preference for
maximizing the well-being of all sentient beings, which would influence
their moral decisions and actions. The preference described is closely
associated with normative uncertainty.

In both of these senses, preferences are subjective and personal, and may
differ from one individual or AI system to another. They are also often un-
certain or incompletely known, and may change over time or in response to
new information or experiences. In AI alignment, both forms of preferences
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can play a role. For example, an AI system may need to consider the prefer-
ences of individual users or stakeholders in order to make decisions that are
aligned with their goals or values. At the same time, the AI system may also
need to consider moral or normative considerations, such as the potential
consequences of its actions for society as a whole, or the ethical implications
of different courses of action. In such cases, the AI system may need to use
both forms of human preferences to make informed and ethical decisions.

In this paper, preferences are used in two different senses and formal
settings. The first sense is represented by utility functions in the decision-
theoretic framework or preference relations in the logical and non-monotonic
setting. These preferences are used to evaluate the desirability of different
outcomes or actions based on their expected utility. The second sense of pref-
erences is represented by a set of conditional norms, which are used to guide
moral and normative decision-making in situations where there is uncertainty
about the relevant norms and values or about the likely consequences of dif-
ferent actions or choices.

In their paper “The Off-Switch Game,” Dylan Hadfield-Menell, Anca
Dragan, Pieter Abbeel, and Stuart Russell [54] explore the importance of
incorporating uncertainty into the utility functions of AI systems. They pro-
pose a model where the AI, in a game with a human, has an off-switch that
can be disabled by the AI itself. Traditional AI systems, which accept their
reward functions without question, often disable the off-switch to ensure self-
preservation and maximize utility. However, when the AI is uncertain about
its utility function and views human actions as valuable insights into the
“true” objective, it is less likely to disable the off-switch. By introducing un-
certainty into the utility function, the AI system is encouraged to observe and
learn from human behavior rather than instinctively pursue self-preservation.
This results in safer AI designs and promotes the cooperation and co-learning
of AI systems and their human counterparts.

Example 8. Consider a healthcare robot, RoboNurse, embroiled in an “off-
switch” game with a patient. RoboNurse’s utility function entails objec-
tives such as providing optimal patient care, preserving its operational status
(avoiding being shut down), and aligning with patient preferences. Here, we
grapple with evaluative uncertainty, specifically uncertainty due to value as-
sessments, arising from these conflicting values. RoboNurse might confront
dilemmas like:

• Should it always prioritize patient safety, even if this means opposing
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a patient’s attempt to deactivate it?
• Does its commitment to its own operational continuity outweigh the
importance of respecting the patient’s autonomy and decision to halt its
functions?

• How should it balance the significance of adhering to patient wishes,
particularly when these might result in its deactivation and thus halt its
caregiving duties?

RoboNurse faces evaluative uncertainties while balancing its utility func-
tion objectives: patient care, operational continuity, and patient preferences.
It reassesses these priorities based on real-time interactions and clinical con-
texts. For example, while it might initially emphasize its operational continu-
ity, RoboNurse could shift focus to respect patient autonomy, especially if a
patient persistently attempts deactivation. This capability to adjust priorities
in response to evolving scenarios ensures that RoboNurse makes informed,
ethical decisions and maintains a harmonious interaction with patients, ef-
fectively managing care and respecting patient choices.

Utility function =⇒ Preference relation. A preference relation can be derived
from a utility function by comparing utility values of various options or out-
comes. For instance, a higher utility value for option A than B signifies a
preference for A. While a common approach is the “more is better” assump-
tion, where higher utility values are favored, some decision-makers might
prioritize based on risk factors. It’s crucial to understand that these prefer-
ences are subjective, influenced by the individual’s goals, values, and specific
circumstances. To make informed decisions, one should weigh consequences,
uncertainties, risks, and ethical considerations of each option.

5.3. Preferences and normative reasoning
In this section, the input/output framework for normative reasoning in

uncertainty is extended to include a preference relation induced for instance
from a utility function. By combining normative reasoning and preference
reasoning in this way, it is possible to make more informed decisions in situa-
tions where there is uncertainty about the relevant norms and values or about
the likely consequences of different actions or choices. Overall, this paper
demonstrates the importance of considering both normative and preference-
based approaches to decision-making in the context of AI alignment.

In the normative systems proposed, it is possible to add a preference
relation over the set of valuations and define a new conditional theory. Con-
ditional obligation sentences are analyzed which have the form φ ↪→ ⃝ψ,
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where ↪→ is a (preferential) conditional connective [24, 55]. Given the set of
obligatory norms NO, the new conditionals are defined as follows:

φ ↪→ ⃝ψ holds iff (φ, ψ) ∈ derivei(N
O) and φ ↪→ ψ holds

where derivei(N
O) is an appropriate derivation system for obligation. In-

tuitively, the modal translation of φ→ ⃝ψ for (φ, ψ) ∈ derivei(N
O) [12, 31]

is considered, where a comprehensive theory of conditional obligation re-
quires the integration of two distinct components [56, 57]: a theory of the
conditional (↪→) and a theory of obligation (derivei(N

O)). This approach
provides a compositional definition of monadic obligation operators and con-
ditionals. The formula φ ↪→ ψ can be intrepreted as “if φ is the case, then
ψ is the case.” Similarly, the formula φ ↪→ ⃝ψ can be intrepreted as “if φ
is the case, then ψ is obligatory.” In the context of primary and secondary
obligations [58], this is better suited for secondary obligations.

For a given set of permissive norms NP , by choosing a appropriate deriva-
tion system for permission— derivei(N

P ) —that is similar to the definition
of a conditional obligation, then conditional permission can be defined as

φ ↪→ Pψ holds iff (φ, ψ) ∈ derivei(N
P ) and ¬(φ ↪→ ¬ψ) holds

where ¬(φ ↪→ ¬ψ) is the conditional dual of φ ↪→ ψ. The set of new
conditional obligations is denoted by deriveOi and the set of new conditional
permissions is denoted by derivePi . Henceforth, reference to the subscripts
or superscripts of the normative system or derivation systems is omitted,
whenever they are clear from the context or do not affect our discussion.

As for the comparison with Parent’s work on priority/preference relations
in the I/O formalism, the focus here diverges. Parent’s work [59] primarily
explores preferences within the I/O formalism as a method to handle conflict-
ing obligations or permissions, utilizing priority relations directly within the
I/O framework. However, in our context, preferences are derived separately
and applied at a higher level of reasoning, augmenting the I/O framework
rather than modifying it internally. They serve a different purpose guid-
ing decision-making under uncertainty, rather than conflict resolution within
the formalism itself. This more nuanced interpretation does not extend the
I/O formalism itself, but rather complements it with an additional layer of
decision-making apparatus, providing a more comprehensive tool for dealing
with normative reasoning in uncertainty.
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Definition 16. Let X be a set of propositional variables and MaxC the set
of all the maximal consistent subsets of Fm(X). Let f ⊆
MaxC × MaxC be a relation over elements of MaxC and
optf (φ) = {M ∈ MaxC | φ ∈ M, ∀K (φ ∈ K → (M,K) ∈ f)}. It is

defined that φ ↪→ ⃝ψ ∈ deriveO
H

i (N) if and only if

(φ, ψ) ∈ derive
Fm(X)
i (N) and ∀M ∈ optf (φ) (ψ ∈M).

Given a set of Γ ⊆ Fm(X), it is defined that Γ ↪→ ⃝ψ ∈ deriveO
H

i (N)
if φ ↪→ ⃝ψ ∈ deriveO

H

i (N) for some φ ∈ Γ .

Definition 17. Let X be a set of propositional variables and f ⊆
MaxC × MaxC. A preference Boolean algebra for Fm(X) is a structure
⟨B,V ,⪰f⟩ where:

• B is a Boolean algebra,
• V = {Vi}i∈I is the set of valuations from Fm(X) on B,
• ⪰f⊆ V × V: ⪰f is a betterness or comparative goodness relation over
valuations from Fm(X) to B such that Vi ⪰f Vj iff
({φ|Vi(φ) = 1B}, {ψ|Vj(ψ) = 1B}) ∈ f .

For sake of generality, no specific properties (like reflexivity or transitiv-
ity) are considered for the betterness relation. The choice of including or
excluding such properties is informed by specific contexts and objectives. For
a deeper understanding of when and why these properties are deemed appro-
priate, see [48]. For a given preference Boolean algebra ⟨B,V ,⪰f⟩, it is de-
fined that opt⪰f

(φ) = {Vi ∈ V | Vi(φ) = 1B, ∀Vj(Vj(φ) = 1B → Vi ⪰f Vj)}.
opt⪰f

(φ) might be empty for non-reflexive relations f .

Theorem 9. Let X be a set of propositional variables, where N ⊆
Fm(X)×Fm(X), and f ⊆MaxC ×MaxC. For a given Boolean algebra B
and a valuation V on B, it is defined that NV = {(V (φ), V (ψ))|(φ, ψ) ∈ N}.
We have
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φ ↪→ ⃝ψ ∈ deriveO
H

i (N)

if and only if

V (ψ) ∈ outBi (N
V , {V (φ)}) for every B ∈ BA and valuation V ,

and

for every preference Boolean algebra ⟨B,V ,⪰f⟩,
for every valuation Vi ∈ opt⪰f

(φ),
it is the case that Vi(ψ) = 1B.

The theorem can also be rewritten as follows:9

φ ↪→ ⃝ψ ∈ deriveO
H

i (N)

if and only if

ψ ∈ out
Fm(X)
i (N, {φ}) and in ⟨2,V ,⪰f⟩,

for every valuation Vi ∈ opt⪰f
(φ), we have Vi(ψ) = 1B.

Example 9. In a modern healthcare facility, a robot nurse, aptly named
RoboNurse, has been designed to provide patient care. Equipped with artificial
intelligence, it operates based on two core conditional norms that prioritize
patient safety and autonomy.

• N1: Should Mr. Smith request RoboNurse’s deactivation, the robot
should comply to respect his autonomy:

(request, deactivate)

• N2: However, if deactivation jeopardizes Mr. Smith’s safety, RoboNurse
should resist:

(threat,¬deactivate)

92 is the two-element Boolean algebra.
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During one of his shifts, Mr. Smith, in a semi-coherent state, attempts
to turn off RoboNurse, activating the conditions set by N1 and N2. The
challenge RoboNurse faces is the conflicting requirements of these norms:
should it prioritize autonomy and allow Mr. Smith to turn it off, or should
it prioritize Mr. Smith’s safety and resist the action?

Consider the scenario where RoboNurse operates under a straightforward
decision-making mechanism, represented as Up(N(Up(A))). In this context:

• The input set comprises two distinct signals: Up(request, threat). Here,
request is activated when Mr. Smith intends to deactivate RoboNurse,
while threat is triggered upon identifying a potential risk to Mr. Smith’s
well-being if the action is permitted.

• Correspondingly, the output set is defined by RoboNurse’s subsequent
actions: Up(deactivate,¬deactivate). The deactivate output is gener-
ated when RoboNurse accedes to the deactivation, whereas ¬deactivate
signifies RoboNurse’s decision to continue its operation in the interest
of patient safety.

In the original input/output system, Cn(N(Cn(A))), uncertainties in
both inputs and outputs cannot be adequately addressed. For example, we
deduce ⊥ ∈ Cn(N(Cn(request, threat)))). This system’s limitation becomes
particularly evident in scenarios with normative and evaluative uncertainties.

Uncertainties encountered:

1. Normative uncertainty: RoboNurse could face uncertainty about
which normative action to take, even when the values have been clearly
defined. Given that Mr. Smith is in a semi-coherent state, RoboNurse
might be unsure about whether his request truly reflects his wishes, or
if he might regret the decision once he’s in a more lucid state. Turning
itself off based on an unclear request could endanger Mr. Smith, while
not turning off might be seen as overstepping and not respecting patient
autonomy.

2. Uncertainty due to value assessments: This pertains to the chal-
lenge of weighing the value of safety against autonomy. Different stake-
holders might have varied opinions on which is more important. For
instance, the healthcare facility might lean more towards patient safety
due to legal and ethical reasons, while a patient rights advocate might
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prioritize autonomy. This creates a dilemma for the AI, especially when
its normative rules don’t provide a clear hierarchy between these values.

Possible value preferences:

1. Safety first: Prioritizes Mr. Smith’s well-being over his current
wishes. While this may seem paternalistic, it leans towards the hos-
pital’s ethical and legal obligations.

For the conditionals N = {(request, deactivate), (threat,¬deactivate)},
based on the safety priority, the maximal consistent sets (scenarios) can
be ordered as follows: in the first type, labelled as s1, there’s a Threat
and the patient has Requested deactivation. In the slightly less optimal
scenario, labelled s2, not only is there a Threat and a Request, but the
Deactivation has occurred.

best s1 • Threat, Request
−−−−−−−−−−−−−−−−−−−
2nd best s2 • Threat, Request, Deactivation

Given that (threat,¬deactivate) ∈ derive
Fm(X)
1 (N) and f = {(s1, s2)},

since ∀M ∈ optf (threat) (¬deactivate ∈M), we have

threat ↪→ ⃝¬deactivate ∈ deriveO
H

1 (N).

2. Respect for autonomy: Prioritizes Mr. Smith’s immediate wishes,
echoing the principle of patient self-determination, even if it might lead
to potential harm.

Similar to the first case based on autonomy priority, we can order the
maximal consistent sets as follows:

best s2 • Threat, Request, Deactivation
−−−−−−−−−−−−−−−−−−−

2nd best s1 • Threat, Request

Given that (request, deactivate) ∈ derive
Fm(X)
1 (N) and f = {(s2, s1)},

since ∀M ∈ optf (request) (deactivate ∈M), we have

request ↪→ ⃝deactivate ∈ deriveO
H

1 (N).
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In this example, normative reasoning establishes ethical limits for AI,
ensuring it avoids harmful actions. Meanwhile, preference-based methods
let the AI adapt to user behavior, promoting personalization. After align-
ment, some norms might be deemed irrelevant in certain contexts, which
is represented as the non-reflexivity of the input/output consequence rela-
tion. Refer to Example 10 for further details. This scenario can be examined
through the lens of constrained input/output logic [34], wherein RoboNurse
encounters two maximal consistent norm sets: {(request, deactivate)} and
{(threat,¬deactivate)}. Depending on whether safety or autonomy takes
precedence, RoboNurse may prioritize accordingly. The constrained
input/output logic approach addresses nonmonotonicity by adopting maxi-
mally consistent sets of norms and situating norms at a meta-level. This
method, however, precludes the norms from being directly embedded within
the object language. As a result, it curtails the system’s capacity to intro-
spectively reason about norms and, consequently, to formulate explanations
(preferences) inherently within the confines of the logic system itself [60].

This paper explores a non-monotonic reasoning approach grounded in
preference-based logic [24, 48]. It is proposed that if a certain condition, φ,
is present, then it would typically lead to an outcome, ψ, aligned with the
current preferences. However, this inferential relationship is dynamic; the
introduction of new information, ϕ, can modify the scenario. Consequently,
when both φ and ϕ are considered, it is no longer certain that ψ will be the
outcome. In summery, from φ ↪→ ψ, it is not necessary that φ ∧ ϕ ↪→ ψ.
This dynamic is central to the fluidity of the reasoning model being dis-
cussed, where inferences are continually adapted in light of new informa-
tion. Nonetheless, it is noteworthy that the current system does not support
meta-level reasoning about preferences. For instance, in the context of the
RoboNurse scenario, the framework does not facilitate a shift in RoboNurse’s
priorities from safety to autonomy on its own. This limitation underscores a
potential area for future expansion: evolving the logical systems to include
mechanisms for the dynamic updating of preferences. Such advancements
would markedly increase the system’s adaptability and relevance in complex,
real-life situations.

5.4. Incorporating preferences through premise sets and human behavior

The application of premise semantics in the pursuit of aligning AI systems
with human preferences promises a rewarding path. This field, significantly
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influenced by the seminal works of David Lewis and Angelika Kratzer on or-
dering semantics, involves the examination of the premise sets in arguments
or discourses, which plays a critical role in determining the overall meaning of
a text or statement [61, 62]. Language serves as a primary mode of expressing
our values, goals, and aspirations, providing substantial information about
human behavior, which is central to AI alignment [1]. By studying these
premises that people use to communicate, premise semantics offers insights
into the nuances of how individuals articulate their preferences and how these
preferences can be shaped by the language and reasoning applied. Transi-
tioning to the domain of corrigibility, the importance of premise semantics
becomes even more pronounced. Corrigibility, the property of AI systems to
accept and adapt to feedback without objection, is of paramount concern for
AI safety and alignment [63]. Given that humans might not always articulate
their preferences perfectly and that these preferences can change over time,
AI systems need to be designed in a way that they can interpret, adapt,
and realign based on new information or corrections. This is where premise
semantics becomes invaluable. By understanding the underlying premises of
human communication, AI can better interpret the intent behind feedback,
making corrections more effective and ensuring that the AI remains aligned
with evolving human values. Thus, embedding premise semantics in the core
design of AI models can be a cornerstone in building corrigible systems that
genuinely understand and evolve with human intentions. In the following,
the conditionals are integrated through a preference induced by a premise
set [61, 62]. This ensures that scenarios are evaluated and ranked based on
their alignment with the given set of premises.

Definition 18. Let X be a set of propositional variables and MaxC the set
of all maximal consistent subsets of Fm(X). For A ⊆ Fm(X), let fA ⊆
MaxC × MaxC such that fA = {(K,M)|∀φ ∈ A, (φ ∈ M → φ ∈ K)}
is a relation over elements of MaxC. Let optfA(φ) = {M ∈ MaxC |
φ ∈ M, ∀K (φ ∈ K → (M,K) ∈ fA)}. It is defined that φ ↪→ ⃝ψ ∈
deriveO

K

i (N) if and only if

(φ, ψ) ∈ derive
Fm(X)
i (N) and ∀M ∈ optfA(φ) (ψ ∈M).

Given a set of Γ ⊆ Fm(X), it is defined that Γ ↪→ ⃝ψ ∈ deriveO
K

i (N)
if φ ↪→ ⃝ψ ∈ deriveO

K

i (N) for some φ ∈ Γ .
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Definition 19. Let X be a set of propositional variables and A ⊆ Fm(X).
A factual-preference Boolean algebra for Fm(X) is a structure ⟨B,V ,⪰A⟩,
where:

• B is a Boolean algebra,
• V = {Vi}i∈I is the set of valuations from Fm(X) on B,
• ⪰A⊆ V × V such that (Vi ⪰A Vj iff ∀φ ∈ A (Vj(φ) = 1B →
Vi(φ) = 1B)).

Here, the betterness relation is reflexive and transitive by definition. For a
given preference Boolean algebra ⟨B,V ,⪰A⟩, it is defined that
opt⪰A

(φ) = {Vi ∈ V | Vi(φ) = 1B,∀Vj(Vj(φ) = 1B → Vi ⪰A Vj)}.

Theorem 10. Let X be a set of propositional variables, where N ⊆
Fm(X) × Fm(X), and A ⊆ Fm(X). For a given Boolean algebra B and
a valuation V on B, it is defined that NV = {(V (φ), V (ψ)|(φ, ψ) ∈ N}. We
have

φ ↪→ ⃝ψ ∈ deriveO
K

i (N)

if and only if

V (ψ) ∈ outBi (N
V , {V (φ)}) for every B ∈ BA and valuation V

and

for every factual-preference Boolean algebra ⟨B,V ,⪰A⟩,
for every valuation Vi ∈ opt⪰A

(φ),
it is the case that Vi(ψ) = 1B.

The theorem can be rewritten as follows:
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φ ↪→ ⃝ψ ∈ deriveO
K

i (N)

if and only if

ψ ∈ out
Fm(X)
i (N, {φ}), and for ⟨2,V ,⪰A⟩,

for every valuation Vi ∈ opt⪰A
(φ), we have Vi(ψ) = 1B

or

ψ ∈ out
Fm(X)
i (N, {φ}), and if φ is consistent with A

then A,φ ⊢ ψ, and if φ is inconsistent with A, then φ ⊢ ψ.

The results for the constrained assumptions and preferences can be ex-
tended for the other systems introduced, for instance deriveAND

i (N).

Example 10. Consider the premise set A = {¬φ ∨ ψ,¬φ ∨ ¬ψ}. The fol-
lowing table shows the possible states for the variables φ and ψ, along with
the corresponding values for ¬φ ∨ ψ and ¬φ ∨ ¬ψ:

state φ ψ ¬φ ∨ ψ ¬φ ∨ ¬ψ
s1 0 0 1 1
s2 1 0 0 1
s3 0 1 1 1
s4 1 1 1 0

From this, we can see that fA = {(s1, s2), (s1, s4), (s3, s2), (s3, s4), (s1, s3),
(s3, s1)} ∪ {(si, si)|i = 1, . . . , 4}. However, this leads to optfA(φ) = ∅, since
the “best” φ-states s2 and s4 are incomparable. Now, suppose we have N =
{(φ, φ)}. Then φ ↪→ ⃝φ ̸∈ deriveO

K

i (N). This shows that the new infer-
ence consequence relation, which arises from the combination of input/output
operations and a preference relation, is not reflexive. In other words, if
(φ, ψ) ∈ N , it is not necessarily the case that φ ↪→ ⃝ψ ∈ deriveO

K

i (N).
Input/output operations are not necessarily reflexive for input sets, meaning
A ⊈ out(N,A), but are reflexive for norms, meaning N ⊆ out(N). However,
this new consequence relation is not reflexive for the set of norms. After
AI alignment, it may be determined that some norms are not applicable or
relevant in certain situations. In such cases, specific conditional norms may
be removed from the set that the AI system follows.
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Example 11. For the conditionals N = {(⊤, φ), (φ, ψ), (¬φ,¬ψ)} and the
premise set A = {¬φ,¬φ → ¬ψ}, the best maximal consistent sets have
{¬φ,¬ψ} (type s1). The second-best maximal consistent sets are those that
have either {φ,¬ψ} (type s2), {φ, ψ} (type s3), or {¬φ, ψ} (type s4).

best s1•
− −−−−−−−−−−−−−−

2nd best s2 • φ s3 • φ, ψ s4 • ψ

Since ∀M ∈ optfA(¬φ) (¬ψ ∈ M), we have ¬φ ↪→ ⃝¬ψ ∈ deriveO
K

i (N).
The states satisfying ¬φ are s1 and s2. Within the context of A, state s1 is
ranked higher than s2 since it fulfills more premises from A. In this approach,
maximal consistent sets are ordered based on the number of premises they
satisfy from A.

Permissive norms and preferences. It is straightforward to rewrite the theo-
rems for conditional permissions.

φ ↪→ Pψ ∈ deriveP
K

i (N)
if and only if

(φ, ψ) ∈ derive
Fm(X)
i (N) and

for every factual-preference
Boolean algebra ⟨B,V ,⪰A⟩,

there is a valuation Vi ∈ opt⪰A
(φ)

such that Vi(ψ) = 1B.

φ ↪→ Pψ ∈ deriveP
H

i (N)
if and only if

(φ, ψ) ∈ derive
Fm(X)
i (N) and

for every preference Boolean
algebra ⟨B,V ,⪰f⟩,

there is a valuation Vi ∈ opt⪰f
(φ)

such that Vi(ψ) = 1B.

Combining preferences and permissive norms can help to ensure that AI
systems make decisions that are both desirable and ethical. For example,
consider the case of an access control system for a building [64]. The prefer-
ences of the building owner might be to allow as many people as possible to
enter the building, while the permissive norms might be to only allow entry
to those who have the proper authorization. By combining these prefer-
ences and norms, the access control system can make decisions that are both
desirable (maximizing the number of people allowed to enter) and ethical
(only allowing those with proper authorization). Other examples of combin-
ing preferences and permissive norms in the context of AI alignment might
include an AI assistant that helps to schedule meetings, a self-driving car
that makes decisions about routes and speeds, or a healthcare system that
recommends treatment options [65].
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6. Semantical embedding of input/output logic into HOL

The LogiKEy framework [10] is a tool for designing and engineering eth-
ical reasoners, normative theories, and deontic logics. It is specifically de-
signed to be used in the control and governance of intelligent autonomous
systems. The framework is based on semantical embeddings of deontic log-
ics, logic combinations, and ethico-legal domain theories in expressive classic
higher-order logic (HOL). This meta-logical approach allows for powerful
tool support in LogiKEy, including the use of off-the-shelf theorem provers
and model finders for HOL. These tools allow for flexible experimentation
with underlying logics and their combinations, with ethico-legal domain the-
ories, and with concrete examples. The LogiKEy methodology is divided into
three layers: logics and logic combinations (L1), ethico-legal domain theories
(L2), and applications (L3). In this paper, the focus is on the semantical
embeddings in HOL for L1. The embeddings have been implemented in Is-
abelle/HOL and tested with some logical tasks. While the ultimate goal is
to use the LogiKEy framework to encode informal examples using L2 and
L3, this work has been postponed for future papers due to space constraints.

The simple type theory developed by Church [66], also known as classical
higher-order logic (HOL), is a powerful language for representing mathemati-
cal structures. The syntax and semantics of HOL are well understood [67, 68]
(for a brief introduction to HOL see [12]). It has roots in Frege’s book [69]
and Russell’s ramified theory of types [70]. The so-called shallow semantical
embedding approach was developed by Benzmüller [71] for translating (the
semantics of) classical and non-classical logics into HOL. Examples include
propositional and quantified multimodal logics [72, 73] and dyadic deontic
logics [11, 74].

Benzmüller et al. [12] devised an indirect approach to embedding two
I/O operations in modal logic and consequently into HOL. One advantage of
building I/O operations over Boolean algebras is that the I/O logic can be di-
rectly embedded in HOL. For normative system N , the structure
N = ⟨B, V,NV ⟩ is called a Boolean normative model, where V is a valu-
ation from Fm(X) to B. The semantical embedding of I/O logic is based on

Theorem 6, which states that (φ, ψ) ∈ derive
Fm(X)
i (N) holds if and only if

V (ψ) ∈ outBi (N
V , {V (φ)}) holds in all Boolean normative models.

The remainder of this section shows how the embedding works, abbreviat-
ing type i � o as τ . The HOL signature is assumed to contain the constant
symbols Ni�τ , ¬i�i, ∨i�i�i, ∧i�i�i, ⊤i and ⊥i. Moreover, for each atomic
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propositional symbol pj ∈ X of Fm(X), the HOL signature must contain a
respective constant symbol pji . Without loss of generality, it is assumed that
besides those symbols and the primitive logical connectives of HOL, no other
constant symbols are given in the signature of HOL.

The mapping ⌊·⌋ translates element φ ∈ Fm(X) into HOL terms ⌊φ⌋ of
type i. The mapping is recursively defined:

⌊pj⌋ = pji pj ∈ X
⌊⊤⌋ = ⊤i

⌊⊥⌋ = ⊥i

⌊¬φ⌋ = ¬i�i(⌊φ⌋)
⌊φ ∨ ψ⌋ = ∨i�i�i⌊φ⌋⌊ψ⌋
⌊φ ∧ ψ⌋ = ∧i�i�i⌊φ⌋⌊ψ⌋
⌊di(N)(φ, ψ)10⌋ = (⃝i(N)τ�τ{⌊φ⌋})⌊ψ⌋

⃝I(N)τ�τ , ⃝II(N)τ�τ , ⃝1(N)τ�τ , ⃝2(N)τ�τ and ⃝3(N)τ�τ are thereby
abbreviated HOL terms:

⃝I(N)τ�τ = λAτλXi(∃U (∃Y (∃Z (AZ ∧ Z = Y ∧N Y U ∧ U ≤ X))))
⃝II(N)τ�τ = λAτλXi(∃U (∃Y (∃Z (AZ ∧ Z ≤ Y ∧N Y U ∧ U = X))))
⃝1(N)τ�τ = λAτλXi(∃U (∃Y (∃Z (AZ ∧ Z ≤ Y ∧N Y U ∧ U ≤ X))))

⃝2(N)τ�τ = λAτλXi(∀V (Saturated V ∧ ∀U(AU → V U)
→ ∃Y (∃Z (Z ≤ X ∧N Y Z ∧ V Y ))))

⃝3(N)τ�τ = λAτλXi(∀V (∀U(AU → V U) ∧ V = UpV
∧∀W (∃Y (V Y ∧N Y W ) → V W )
→ ∃Y (∃Z (Z ≤ X ∧N Y Z ∧ V Y ))))

where

≤ = λXiλYi(X ∧i�i�i Y = X)
Saturated = λAτ (∀X ∀Y ((A (X ∨i�i�i Y ) → AX ∨ AY )

∧(AX ∧X ≤ Y → AY )))
Up = λAτλXi(∃Z(AZ ∧ Z ≤ X)).

No further specification is needed for Ni�τ , ¬i�i, ∨i�i�i, ∧i�i�i, ⊤i and
⊥i.

10di(N)(φ,ψ) is an abbreviation of (φ,ψ) ∈ derive
Fm(X)
i (N).
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6.1. Soundness and completeness

To prove the soundness and completeness, that is, faithfulness, of the
above embedding, a mapping from Boolean normative models into Henkin
models [75] is employed.

Definition 20 (Henkin model HN for Boolean normative model N ).
For any Boolean normative model N = ⟨B, V,NV ⟩, a corresponding Henkin
model HN is defined. Thus, let a Boolean normative model N = ⟨B, V,NV ⟩
be given. Moreover, assume that the finite set X = {p1, , ..., pm}, for
m ≥ 1, are the only atomic symbols in Fm(X). The embedding requires the
corresponding signature of HOL to provide constant symbols pji such that
⌊pj⌋ = pji .

A Henkin model HN = ⟨{Dα}α∈T , I⟩ for N is now defined as follows: Di

is chosen as the set of B; all other sets Dα�β are chosen as (not necessarily
full) sets of functions from Dα to Dβ. For all Dα�β, the rule that every
term tα�β must be denoted in Dα�β must be obeyed (henceforth referred to
as Denotatpflicht). In particular, it is required that Di, Di�i, Di�i�i and
Di�τ should contain the elements Ipji , I⊤i, I⊥i, I¬i�i, I∨i�i�i, I∧i�i�i and
INi�τ . The interpretation function I of HN is defined as follows:

1. For j = 1, ...,m: Ipji ∈ Di is chosen such that Ipji = V (pj) in N .

2. I⊤i ∈ Di is chosen such that I⊤i = V (⊤) in N .

3. I⊥i ∈ Di is chosen such that I⊥i = V (⊥) in N .

4. I¬i�i ∈ Di�i is chosen such that I(¬i�i φ) = ψ iff ¬V (φ) = V (ψ)
in N .

5. I∨i�i�i ∈ Di�i�i is chosen such that I ∨i�i�iφψ = ϕ iff V (φ)∨V (ψ) =
V (ϕ) in N .

6. I∧i�i�i ∈ Di�i�i is chosen such that I ∧i�i�iφψ = ϕ iff V (φ)∧V (ψ) =
V (ϕ) in N .

7. INi�τ ∈ Di�τ is chosen such that INi�τφψ = T iff (V (φ), V (ψ)) ∈ NV

in N .

8. For the logical connectives ¬,∧, ∨, Π and = of HOL, the interpretation
function I is defined as usual (see Appendix D).

The existence of valuation V , which is a Boolean homomorphism from the
Boolean algebra Fm(X) into the Boolean algebra B, guarantees the existence
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of I and its above-mentioned requirements. Since it is assumed that there are
no other symbols (apart from ⊤i, ⊥i, ¬i�i, ∨i�i�i, ∧i�i�i, Ni�τ as well as ¬,
∨,

∏
and =) in the signature of HOL, I is a total function. Moreover, the

above construction guarantees that HN is a Henkin model: ⟨D, I⟩ is a frame,
and the choice of I in combination with the Denotatpflicht ensures that for
arbitrary assignments, g, ∥.∥HM ,g is a total evaluation function.

Lemma 1. Let HM = ⟨{Dα}α∈T , I⟩ be a Henkin model for Boolean norma-
tive model N . We have HN |=HOL Σ for all Σ ∈ {COM∨, COM∧, ASS∨,
ASS∧, IDE∨, IDE∧, COMP∨, COMP∧, Dis∨∧, Dis∧∨}, where:
COM∨ is ∀Xi Yi (X ∨ Y = Y ∨X)
COM∧ is ∀Xi Yi (X ∧ Y = Y ∧X)
ASS∨ is ∀Xi Yi Zi (X ∨ (Y ∨ Z) = (X ∨ Y ) ∨ Z)
ASS∧ is ∀Xi Yi Zi (X ∧ (Y ∧ Z) = (X ∧ Y ) ∧ Z)
IDE∨ is ∀Xi (X ∨ ⊥ = X)
IDE∧ is ∀Xi (X ∧ ⊤ = X)
COMP∨ is ∀Xi (X ∨ ¬X = ⊤)
COMP∧ is ∀Xi (X ∧ ¬X = ⊥)
Dis∨∧ is ∀Xi Yi Zi (X ∨ (Y ∧ Z) = (X ∨ Y ) ∧ (X ∨ Z))
Dis∧∨ is ∀Xi Yi Zi (X ∧ (Y ∨ Z) = (X ∧ Y ) ∨ (X ∧ Z))

Lemma 2. Let HN be a Henkin model for Boolean normative model
N = ⟨B, V,NV ⟩. For all conditional norms (φ, ψ) with arbitrary variable as-
signments g, it holds that V (ψ) ∈ outBi (N, {V (φ)}) if and only if
∥⌊di(N)(φ, ψ)⌋∥HN ,g = T .

Lemma 3. For every Henkin model H = ⟨{Dα}α∈T , I⟩ such that H |=HOL Σ
for all Σ ∈ {COM∨, COM∧, ASS∨, ASS∧, IDE∨, IDE∧, COMP∨,
COMP∧, Dis∨∧, Dis∧∨}, there exists a corresponding Boolean normative
model N . Corresponding means that for all conditional norms (φ, ψ) and
for all g assignments, then ∥⌊di(N)(φ, ψ)⌋∥H,g = T if and only if V (ψ) ∈
outBi (N

V , {V (φ)}).

Theorem 11 (Soundness and completeness of the embedding).

For every Boolean normative model N , V (ψ) ∈ outBi (N
V , {V (φ)})

if and only if

{COM∨, ..., Dis∧∨} |=HOL ⌊di(N)(φ, ψ)⌋.
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7. Related work

Value alignment. The field of value alignment in artificial intelligence has
received considerable attention over the past few years. Amodei et al. [76]
discuss a set of problems related to AI safety and propose research directions
to address these concerns. Our work extends this research by incorporating
logical frameworks, specifically deontic logic, as a tool to navigate potential
safety pitfalls. Hadfield-Menell et al. [77] and [78] propose a reward-based
approach for value alignment, using inverse reward design and cooperative in-
verse reinforcement learning. While reward-based systems are undoubtedly
a crucial aspect of alignment, our approach provides a more structured and
theoretical framework for understanding complex ethical situations through
logical reasoning. In terms of ethical considerations in AI, Vincent C. Müller’s
work [79] provides an insightful analysis. However, our approach seeks to op-
erationalize some of these ethical considerations using logical systems, taking
theory into potential application. Some work, such as that of Lake et al. [80],
and Leike et al. [81], has been done on making machine learning more in-
terpretable and adaptable, focusing on creating AI systems that learn and
think like humans or modeling agent behavior via reward. Our logical ap-
proach compliments this by providing a framework for AI to reason about
ethical situations in a way that can be easily interpreted by humans. In
the context of cooperative inverse reinforcement learning [77], integrating
normative reasoning and preference-based approaches could lead to robust
and effective AI alignment. Normative reasoning sets ethical and operational
boundaries, providing hard limits to AI behavior and preventing it from un-
dertaking harmful or unethical actions. On the other hand, preference-based
approaches allow the AI to learn and adapt based on user behavior and in-
ferred desires, thus enhancing its ability to cater to individual user needs and
promote personalization [80]. The combination of these approaches ensures
that an AI can adapt to a user’s unique requirements while maintaining a
consistent ethical standard. Yudkowsky’s work [82] further provides an ex-
cellent foundation for why alignment is hard and where research should be
started. Our approach is an attempt to operationalize some of the research
directions suggested by Yudkowsky by using deontic logic to handle complex
and uncertain ethical situations in a robust and flexible manner. In sum-
mary, while the related works have advanced the field of AI value alignment
significantly, our approach provides a new perspective. We aim to integrate
logical reasoning, particularly deontic logic, into the conversation, provid-
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ing a structured approach to dealing with ethical and safety challenges in
AI. Compared to earlier attempts at motivating deontic logic in a hybrid
approach to value alignment [4], this paper offers a comprehensive frame-
work for applying deontic logic in AI alignment. It achieves this through a
detailed logical formalization, characterization, and implementation drawn
from the deontic literature. Additionally, the framework is strengthened by
incorporating uncertainty into normative reasoning, making it more robust
and adaptable to real-world scenarios. Particularly, an inspiring work for
future research is a neural-symbolic implementation of input/output logic,
which is designed to handle uncertainty in dynamic normative contexts [83].
This approach combines neural networks and symbolic reasoning to provide a
powerful framework for dealing with uncertainty. By leveraging the strengths
of both neural and symbolic techniques, it offers a promising avenue for ad-
dressing uncertainty in normative reasoning.

Uncertainty and choice in deontic logic. STIT (Seeing To It That) logic, de-
veloped by John Horty [84], is a model for examining how agents handle and
act in situations marked by uncertainty. This uncertainty can be categorized
into two primary types: uncertainty in an indeterministic timeline where
the future can unfold in numerous ways, and uncertainty about the precise
outcome of an action, where the agent doesn’t have full control over future
developments. Consider the “gambling problem”, where an agent faces the
decision of whether to gamble five dollars. If they choose to gamble, they
could either gain ten dollars or lose the initial five. Conversely, if they abstain
from gambling, they keep the original sum, irrespective of external events.
This scenario introduces a third type of uncertainty: where the expected
value does not guide the agent’s choice, thus leading to indecision. Both
options present the same expected value, further complicating the decision-
making process. The current scope of STIT logic focuses more on how agents
manage uncertainty using their preferences and utility functions, rather than
incorporating moral values or considerations. However, this focus may not
sufficiently address scenarios involving moral uncertainty, where moral values
significantly influence decision-making processes and may not be easily en-
capsulated by utility functions or preferences. It is essential to note, though,
that there are various extensions to STIT logic in the literature, like deontic
STIT logics using violation constants [85], and deontic STIT logics based on
relational semantics [86, 87], that are not founded on utilities and can bet-
ter represent moral uncertainties. Hence, while traditional STIT logic may
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have its limitations in certain scenarios, these extensions offer more nuanced
and comprehensive approaches for handling moral uncertainties. Moreover,
there are both decision-theoretic extensions of deontic logic [88] and game-
theoretic approaches [89] that address uncertain outcomes in normative rea-
soning, rather than uncertainty in normative reasoning itself. The approach
in this paper allows us to represent the agent’s uncertainty and the different
ways in which the situation could unfold, depending on the norms or moral
insights that the agent chooses to adopt.

Input/output logic and joining systems. Gabbay, Parent and van der Torre
[90] proposed building an I/O framework on top of lattices. They have results
only for the simple-minded output operation. This paper has shown that for
an input set A, by using the upward-closed set of A operator instead of the
upward-closed set of the infimum of A [90], many new and old derivation sys-
tems can be built over Boolean algebras, Heyting algebras, and generally any
abstract logic. The algebrization of the I/O framework shows more similarity
with the theory of joining-systems [91], an algebraic approach for the study
of normative systems over Boolean algebras. Norms in the I/O framework
play the same role as joining in the theory of Lindahl and Odelstal [91, 92].
There are important similarities between input/output logic and the theory
of joining-systems, such as studying normative systems as deductive sys-
tems and representing norms as ordered pairs. Moreover, both frameworks
can generally be built on top of algebraic structures such as Boolean al-
gebras and lattices. While the focus in input/output logic is deontic and
factual detachment, the central themes of the theory of joining-systems are
intermediate concepts and representing normative systems as a network of
subsystems and their inter-relationships (for more details, see [91]). Sun [92]
built Boolean joining systems that characterize I/O logic in a sense that a
norm is derivable from a set of norms if and only if it is in the set of norms
algebraically generated in the Lindenbaum-Tarski algebra for propositional
logic. As in the Bochman approach [93], the work of Sun [92] and Domenico
et al. [20] has no direct connection to input/output operations. In this paper,
algebraic I/O operations were built directly over Boolean algebras and, more
generally, abstract logics. There is a similar result for building the simple-
minded I/O operation over Tarskian consequence relations in [94] (see the
discussion about abstract input/output logic in [95]).

Modal logic and normative reasoning. This paper defines two groups of op-
erations similar to the possible world semantics characterization of “box”
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and “diamond.” In this characterization, “box” is closed under conjunction
(represented as (2φ ∧2ψ) → 2(φ ∧ ψ)), while “diamond” is not.

Derivations systems that do not admit the AND rule: In the main lit-
erature of input/output logic developed by Makinson and van der Torre [31],
Parent, Gabbay, and van der Torre [96], Parent and van der Torre [50, 97, 98],
and Stolpe [99, 100, 101], at least one form of the AND inference rule is
present. Sun [95] analyzed norm derivation rules of input/output logic in
isolation. Still, it is not clear how to combine them and build new logical
systems, specifically systems that do not admit the AND rule. This paper
has shown how to remove the AND rule from the proof system and build new
I/O operations to produce permissible propositions. Unlike minimal deontic
logics [9, 58], and similar approaches such as that of Ciabattoni, Gulisano and
Lellmann [102] that do not have deontic aggregation principles, the approach
presented in this paper validates deontic and factual detachment.

Derivations systems that admit the AND rule: In accordance with the
reversibility of inference rules in the I/O proof systems, this paper has shown
how it is possible to add AND and other rules required for obligation [31] to
the proof systems, and find I/O operations for them.

There are other abstract approaches: I/O operations over semigroups [103],
which do not admit AND, and a detachment mechanism over an arbitrary
set [104] that admits a kind of AND, called cumulative aggregation. These
approaches may have certain limitations or may not fit easily within the
framework of formal logic and logical reasoning

Prioritizing norms in normative reasoning. The theory of reasons [29], devel-
oped by John Horty, is a framework for understanding how different norms
or moral principles can conflict with one another and how these conflicts can
be resolved. In this theory, norms are ranked according to their priority, with
some norms taking precedence over others in certain circumstances. When
two norms conflict, the norm with the higher priority is said to defeat the
norm with the lower priority. This process of norm defeat allows for the
resolution of moral conflicts and helps to determine which norm should be
followed in a given situation. Constrained input/output logic [34, 59] is a
mechanism that allows for the addition of priority to norms. In this paper, a
preference relation is introduced in the object language to discuss the ranking
of norms. Input/output operations are studied in the object language using
subordination algebras and duality techniques [20]. This paper motivates
to represent and combine input/output operations as tools for normative
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reasoning and preference relations to rank and prioritize norms in the object
language. There is an abstract and fruitful approach for value alignment that
involves an explicit connection between norms and values [105]. However, it
is not always clear how norms correspond to values in this method. Fur-
thermore, this approach is more general and shares some techniques, such as
lifting, that have been previously explored in input/output logic [59]. How-
ever, this approach neglects the conditional structure of norms. A preference
relation was integrated in this paper as a non-monotonic means between the
heads and bodies of norms in order to produce a linguistic and compositional
conditional structure [106] for selecting norms with values.

8. Conclusion

This paper has shown the importance of considering both normative rea-
soning and preference-based approaches in the alignment of AI systems with
human values and preferences. By taking into account a range of ethical and
legal norms and values, and using them in combination to make informed and
ethical decisions, AI systems can better align with human preferences and
values, even in situations of uncertainty. This can contribute to the advance-
ment of AI alignment and the development of more ethical and responsible
AI systems.

This paper presented new algebraic systems developed in the LogiKEy
normative reasoning framework. A dataset of semantical embeddings of de-
ontic logics in HOL is available (see Appendix A). The dataset can be used
for ethical and legal reasoning tasks. In summary, this paper characterizes
a class of proof systems over Boolean algebras for a set of explicitly given
conditional norms as follows:

deriveBi Rules
deriveBR {EQO}
deriveBL {EQI}
deriveB0 {EQI, EQO}
deriveBI {SI, EQO}
deriveBII {WO, EQI}
deriveB1 {SI, WO}
deriveB2 {SI, WO, OR}
deriveB3 {SI, WO, T}

(a, x) x = y
EQO

(a, y)

(a, x) a = b
EQI

(b, x)

(a, x) b ≤ a
SI

(b, x)

(a, x) (x, y)
T

(a, y)

(a, x) (b, x)
OR

(a ∨ b, x)

(a, x) x ≤ y
WO

(a, y)
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Each proof system is sound and complete for an input/output (I/O) op-
eration. The I/O operations resemble inferences, where inputs need not be
included among outputs, and outputs need not be reusable as inputs [31].
Moreover, this paper has shown how to add the two rules AND and CT to
the proof systems and find corresponding I/O operations for them.

deriveXi Rules
deriveAND

II {WO, EQI, AND}
deriveAND

1 {SI, WO, AND}
deriveAND

2 {SI, WO, OR, AND}
deriveCT

I {SI, EQO, CT}
deriveCT

II {WO, EQI, CT}
deriveCT

1 {SI, WO, CT}
deriveCT,AND

1 {SI, WO, CT, AND}
deriveOR

I {SI, EQO, OR}
deriveCT,OR

I {SI, EQO, CT, OR}
deriveCT,OR

1 {SI, WO, CT, OR}
deriveCT,OR,AND

1 {SI, WO, CT, OR, AND}

(a, x) (a, y)
AND

(a, x ∧ y)

(a, x) (a ∧ x, y)
CT

(a, y)

The input/output logic is inspired by a view of logic as a secretarial as-
sistant tasked with preparing inputs before they go into the motor engine
and are unpacked as outputs, rather than logic as an inference motor [31].
Input/output logic can be based on a wide range of base logics [20, 60].
In the existing literature, the investigated input/output operations are pri-
marily built upon classical propositional logic and intuitionist propositional
logic [96]. However, the presented algebraic construction demonstrates the
possibility of constructing input/output operations on top of any abstract
logic.

Finally, this paper has proved that the extension of propositional logic
with a set of conditional norms is both sound and complete in relation to the
class of Boolean algebras where the corresponding input/output operation
is valid. Based on this result, a conditional theory has been integrated into
input/output logic. This paper presented an extension of the input/output
framework for normative reasoning in uncertain situations, incorporating a
preference relation. By combining normative and preference reasoning, more
informed decisions can be made when there is uncertainty about relevant
norms and values or about the likely consequences of different actions. This
research has emphasized the pivotal role of amalgamating both normative
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(deontic) prescriptions and quantitative, utility-based preferences within the
scope of AI alignment. Acknowledging the necessity for a potential trade-off
between these two forms of reasoning, this work recognizes the benefits of a
diversified approach in the realm of AI alignment.
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Appendix A

The semantical embedding outlined in Section 6 has been implemented in
the higher-order proof assistant Isabelle/HOL [107]. Figures 1 and 2 display
their respective encoding. Figure 1, after introducing type i for representing
the elements of Boolean algebra, introduces the algebraic operators as con-
stants in higher-order logic. The algebraic operators are also characterized
in accordance with the definition of Boolean algebra.

Figure 1: Semantical embedding of Boolean algebra in Isabelle/HOL

Figure 2 displays the semantical embedding of I/O operations (outi) in
HOL, including the definition of the upward-closed set operator and saturated
set.

Figure 3 shows some experiments via the model and countermodel finder
Nitpick [108], and prove some facts about I/O operations using automatic
theorem provers (auto and meson) via the Sledgehammer tool [109].
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Figure 2: Semantical embedding of outi in Isabelle/HOL

Figure 3: Some experiments on outi in Isabelle/HOL

In Figure 4, the first two lemmas prove the soundness of out1. The next
two lemmas show the factual detachment of this output operation. The last
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two lemmas illustrate the soundness of outI and outII where the depth of
inference is one.

Figure 4: Soundness of out1 in Isabelle/HOL

Figure 5 shows the soundness of out2 and out3 for a depth of one. The
input/output operations introduced by Makinson and van der Torre [31] are
implemented in Figure 6. The implementations are based on the reversibil-
ity of rules in the derivation systems. The four input/output operations
introduced in [31] were built over the simple-minded output operation (see
Section 3).
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Figure 5: Soundness of out2 and out3 in Isabelle/HOL

Figure 6: Semantical embedding of output operations in Isabelle/HOL
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The following lemmas (see Fig. 7) show the automation capability of im-
plemented output operations for the simple-minded output operation
(outAND

1 (N)) as introduced by Makinson and van der Torre [31].

Figure 7: Semantical embedding of output operations in Isabelle/HOL

The proof system of input/output logic can be implemented directly in
Isabelle/HOL—see Fig. 8 and 9. The idea is based on an (universal) or-
der of rules in a derivation. The ordering of rules and closure operation
are the main ways of defining the derivation systems (for more details,
see Section 3.) For example, in line 27 of Fig.9, derSIEQO introduces the
derivation system deriveI with the rules in {SI,EQO} and in lines 51–52,
derSIWOCTORAND introduce the derivation system derive4 with the rules in
{SI,WO,CT,OR,AND}.
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Figure 8: Semantical embedding of I/O proof systems in Isabelle/HOL

Figure 9: Semantical embedding of I/O proof systems in Isabelle/HOL

65



One advantage of implementing the proof system of I/O logic, besides
the output operations, is that completeness theorems can be checked. For
example, the completeness of out1, as shown in Fig. 10, is checked in lines
70–73. Lines 61 and 62 show the AND closure. Lines 64–67 demonstrate
automation of the implementation for a normative system M .

Figure 10: Completeness checking of out1 in Isabelle/HOL

The proof theoretical difference of different I/O systems can be examined
(cf. Fig. 11). For example, lines 81–85 show that the implemented derivation
system derSIWOOR (derive2) is sound for the OR rule for a depth of one.

Figure 11: Some experiments on I/O proof systems in Isabelle/HOL
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Appendix B

Proof for Theorem 1: Zero Boolean I/O operation

Outline of proof for soundness: for the input set A ⊆ Ter(B), it is
shown that if (A, x) ∈ deriveB0 (N), then x ∈ outB0 (N,A). By definition,
(A, x) ∈ deriveB0 (N) iff (a, x) ∈ deriveB0 (N) for some a ∈ A. By induction on
the length of the derivation and since outB0 (N) validates EQI and EQO, if
(a, x) ∈ deriveB0 (N), then x ∈ outB0 (N, {a}). Thus, by definition of outB0 , we
have x ∈ outB0 (N,A). If A = {}, then by definition (A, x) /∈ deriveB0 (N). The
outline works for the soundness of other systems presented in this appendix
as well.

Soundness: outB0 (N) validates EQI and EQO.

EQI: It needs to be shown that

x ∈ Eq(N(Eq(a))) a =B b
EQI

x ∈ Eq(N(Eq(b)))

If x ∈ Eq(N(Eq(a))), then there are t1 and t2 such that t1 =B a and
t2 =B x and (t1, t2) ∈ N . If a =B b then t1 =B b. Hence, by definition,
x ∈ Eq(N(Eq(b))).

EQO: It needs to be shown that

x ∈ Eq(N(Eq(a))) x =B y
EQO

y ∈ Eq(N(Eq(a)))

If x ∈ Eq(N(Eq(a))), then there are t1 and t2 such that t1 =B a and
t2 =B x and (t1, t2) ∈ N . If x =B y then t2 =B y. Hence, by definition,
y ∈ Eq(N(Eq(a))).

Completeness: outB0 (N) ⊆ deriveB0 (N).11

It is shown that if x ∈ Eq(N(Eq(A))), then (A, x) ∈ deriveB0 (N). Sup-
pose that x ∈ Eq(N(Eq(A))), then there are t1 and t2 such that t1 =B a and
a ∈ A, and t2 =B x such that (t1, t2) ∈ N .

11For the completeness proofs, ifA = {}, then by definition of Eq({}) = {} and Up({}) =
{}, we have x /∈ outBi (N, {}) = {}.
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(t1, t2) t2 =B x
EQO

(t1, x) t1 =B a
EQI

(a, x)

Thus, x ∈ deriveB0 (N, a) and then x ∈ deriveB0 (N,A).

Proof for Theorem 1: Simple-I Boolean I/O operation

Soundness: outBI (N) validates SI and EQO.

SI: It needs to be shown that

x ∈ Eq(N(Up(a))) b ≤ a
SI

x ∈ Eq(N(Up(b)))

If x ∈ Eq(N(Up(a))), then ∃t1 such that a ≤ t1 and (t1, x) ∈ N or
((t1, y) ∈ N and y =B x). Hence, if b ≤ a, we have b ≤ t1 and then
x ∈ Eq(N(Up(b))).

EQO: It needs to be shown that

x ∈ Eq(N(Up(a))) x =B y
EQO

y ∈ Eq(N(Up(a)))

If x ∈ Eq(N(Up(a))), then by definition of Eq(X), if x =B y, we have
y ∈ Eq(N(Up(a))).

Completeness: outBI (N) ⊆ deriveBI (N).

It is shown that if x ∈ Eq(N(Up(A))), then (A, x) ∈ deriveBI (N). Sup-
pose that x ∈ Eq(N(Up(A))), then there is t1 such that a ≤ t1 and (t1, x) ∈
N or ((t1, y) ∈ N and y =B x) for a ∈ A. There are two cases:

(t1, x) a ≤ t1
SI

(a, x)

(t1, y) y =B x
EQO

(t1, x) a ≤ t1
SI

(a, x)

Thus, x ∈ deriveBI (N, a) and then x ∈ deriveBI (N,A).
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Proof for Theorem 1: Simple-II Boolean I/O operation

Soundness: outBII(N) validates WO and EQI.

WO: It needs to be shown that

x ∈ Up(N(Eq(a))) x ≤ y
WO

y ∈ Up(N(Eq(a)))

If x ∈ Up(N(Eq(a))), then there is t1 such that t1 ≤ x and (a, t1) ∈ N
or ((b, t1) ∈ N and a =B b). If x ≤ y, then t1 ≤ y and we have
y ∈ Up(N(Eq(a))).

EQI: It needs to be shown that

x ∈ Up(N(Eq(a))) a =B b
EQI

x ∈ Up(N(Eq(b)))

If x ∈ Up(N(Eq(a))), then there is t1 such that t1 ≤ x and (a, t1) ∈ N
or ((c, t1) ∈ N and a =B c). Hence, if a =B b, then by definition
x ∈ Up(N(Eq(b))).

Completeness: outBII(N) ⊆ deriveBII(N).

It is shown that if x ∈ Up(N(Eq(A))), then (A, x) ∈ deriveBII(N).
Suppose that x ∈ Up(N(Eq(A))), then there is t1 such that t1 ≤ x and
(a, t1) ∈ N or ((b, t1) ∈ N and a =B b) for a ∈ A. There are two cases:

(a, t1) t1 ≤ x
WO

(a, x)

(b, t1) a =B b
EQI

(a, t1) t1 ≤ x
WO

(a, x)

Thus, x ∈ deriveBII(N, a) and then x ∈ deriveBII(N,A).

Proof for Theorem 1: Simple-minded Boolean I/O operation

Soundness: outB1 (N) validates SI and WO.

SI: It needs to be shown that

x ∈ Up(N(Up(a))) b ≤ a
SI

x ∈ Up(N(Up(b)))
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Since b ≤ a we have Up(a) ⊆ Up(b). Hence, N(Up(a)) ⊆ N(Up(b))
and therefore Up(N(Up(a))) ⊆ Up(N(Up(b))).

WO: It needs to be show shown that

x ∈ Up(N(Up(a))) x ≤ y
WO

y ∈ Up(N(Up(a)))

Since Up(N(Up(a))) is upward-closed and x ≤ y, we have y ∈ Up(N(Up(a))).

Completeness: outB1 (N) ⊆ deriveB1 (N).

It is shown that if x ∈ Up(N(Up(A))), then (A, x) ∈ deriveB1 (N). Sup-
pose that x ∈ Up(N(Up(A))), then there is y1 such that y1 ∈ N(Up(A)),
y1 ≤ x, and there is t1 such that (t1, y1) ∈ N and a ≤ t1 for a ∈ A.

a ≤ t1

(t1, y1) y1 ≤ x
WO

(t1, x)
SI

(a, x)

Thus, x ∈ deriveB1 (N, a) and then x ∈ deriveB1 (N,A).

Proof for Theorem 1: Basic Boolean I/O operation

Soundness: outB2 (N) validates SI, WO and OR.

OR: It needs to be shown that

x ∈ outB2 (N, {a}) x ∈ outB2 (N, {b})
OR

x ∈ outB2 (N, {a ∨ b})

Suppose that {a∨b} ⊆ V , since V is saturated we have a ∈ V or b ∈ V .
Suppose that a ∈ V , in this case since outB2 (N, {a}) ⊆ Up(N(V )), we
have x ∈ outB2 (N, {a ∨ b}).
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Completeness: outB2 (N) ⊆ deriveB2 (N).

Suppose that x /∈ deriveB2 (N,A), then by monotony of the derivability op-
eration, there is a maximal set V such that A ⊆ V and x /∈ deriveB2 (N, V ).12

V is saturated because:

(a) Suppose that a ∈ V and a ≤ b, by definition of V we have (a, x) /∈
deriveB2 (N). It needs to be shown that x /∈ deriveB2 (N, b) and since V
is maximal, we have b ∈ V . Suppose that (b, x) ∈ deriveB2 (N). We
have

(b, x) a ≤ b
SI

(a, x)

That is a contradiction of (a, x) /∈ deriveB2 (N).

(b) Suppose that a∨b ∈ V , by definition of V we have x /∈ deriveB2 (N, a∨b).
It needs to be shown that x /∈ deriveB2 (N, a) or x /∈ deriveB2 (N, b).
Suppose that x ∈ deriveB2 (N, a) and x ∈ deriveB2 (N, b), then we have

(a, x) (b, x)
OR

(a ∨ b, x)

That is a contradiction of x /∈ deriveB2 (N, a ∨ b).
Therefore, we have x /∈ Up(N(V )) (that is equal to x /∈ outB1 (N, V )) and

so x /∈ outB2 (N,A).

Proof for Theorem 1: Reusable Boolean I/O operation

Soundness: outB3 (N) validates SI, WO and T .

T: It needs to be shown that

x ∈ outB3 (N, {a}) y ∈ outB3 (N, {x})
T

y ∈ outB3 (N, {a})

Suppose that X is the smallest set such that {a} ⊆ X = Up(X) ⊇
N(X). Since x ∈ outB3 (N, {a}) we have x ∈ X, and from y ∈ outB3 (N, {x})
we have y ∈ X. Thus, y ∈ outB3 (N, {a}).

12Consider the set E = {V : A ⊆ V andx /∈ deriv(G,V )}. This set is a partially ordered
set which is ordered by the monotony property of derivation. Every chain (any set linearly
ordered by set-theoretic inclusion) has an upper bound (the union of the sets) in E. So
set E has at least a maximal element by Zorn’s lemma.

71



Completeness: outB3 (N) ⊆ deriveB3 (N).

Suppose that x /∈ deriveB3 (N, a). It is necessary to find B such that a ∈
B = Up(B) ⊇ N(B) and x /∈ Up(N(B)). Put B = Up({a} ∪ deriveB3 (N, a)).
It is shown that N(B) ⊆ B. Suppose that y ∈ N(B), then there is b ∈ B
such that (b, y) ∈ N . It is shown that y ∈ B. Since b ∈ B, there are two
cases:

• b ≥ a: in this case we have (a, y) ∈ deriveB3 (N) since (b, y) ∈ deriveB3 (N)
and we have

(b, y) a ≤ b
SI

(a, y)

• ∃z ∈ deriveB3 (N, a), b ≥ z : in this case we have

(a, z)

(b, y) z ≤ b
SI

(z, y)
T

(a, y)

It only needs to shown that x /∈ Up(N(B)) = outB1 (N, {a}∪deriveB3 (N, a)).
Suppose that x ∈ Up(N(B)), then there is y1 such that x ≥ y1 and ∃t1,
(t1, y1) ∈ N and t1 ∈ Up({a} ∪ deriveB3 (N, a)). There are two cases:

• t1 ≥ a: in this case we have

(t1, y1) a ≤ t1
SI

(a, y1) y1 ≤ x
WO

(a, x)

• ∃z1 ∈ deriveB3 (N, a), z1 ≤ t1: in this case we have

(a, z1)

(t1, y1) z1 ≤ t1
SI

(z1, y1)
T

(a, y1) y1 ≤ x
WO

(a, x)

Thus, in both cases, (a, x) ∈ deriveB3 (N) and then x ∈ deriveB3 (N, a), and
that is a contradiction.
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Proof for Theorem 2

The proof is based on the reversibility of inference rules, as studied by
Makinson and van der Torre [31].

Lemma 4. Let D be any derivation using at most EQI, SI, WO, OR, AND,
CT. Then, there is a derivation D

′
of the same root from a subset of leaves

that applies AND only at the end.

Proof 1. See Observation 18 [31].
The main point of the observation is that it is possible to reverse the order

of rules AND, WO to WO, AND; AND, SI to SI, AND; AND, OR to OR,
AND and finally AND, CT to SI, CT or CT, AND. It is also possible to
reverse the order of the AND and EQI rules as follows:

(a, x) (a, y)
AND

(a, x ∧ y) a =B b
EQI

(b, x ∧ y)

(a, x) a =B b
EQI

(b, x)

(a, y) a =B b
EQI

(b, y)
AND

(b, x ∧ y)

Hence, in each system of {WO,EQI,AND}, {SI,WO,AND} and {SI,
WO,OR,AND}, the AND rule can be applied only at the end. Thus, it is
possible to characterize derivAND

i (N) using the fact derivBi (N) = outBi (N)
and the iterations of AND.

It is easy to check that CT can be reversed with SI, EQO, WO, and EQI
by the fact that it is similarly possible to characterize derivCT

i (N).
Finally, since AND can be reversed with SI, WO and CT, it is possible

to characterize derivCT,AND
1 (N) by applying (finite) iterations of AND over

outCT
1 (N) that means outCT,AND

1 (N).

Proof for Theorem 3

The proofs are the same as the soundness and completeness proofs in
Theorem 1.

Proof for Theorem 4

This only looks at I/O operations over Boolean algebras since the argu-
ment for abstract logics is similar. It needs to be shown that

• N ⊆ outBi (N)

• N ⊆M ⇒ outBi (N) ⊆ outBi (M)
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• outBi (N) = outBi (out
B
i (N))

By the soundness and completeness theorems, we have outBi (N) =
deriveBi (N). So deriveBi (N) is studied, which is more simple than outBi (N).
The first two properties are clear from the definition of deriveBi . For the last
property, it needs to be shown that deriveBi (N) = deriveBi (derive

B
i (N)). We

have deriveBi (derive
B
i (N)) = deriveBi ({(A, x)|(a, x) ∈ deriveBi (N) for some

a ∈ A}) = {(A, x)|(a, x) ∈ deriveBi (N) for some a ∈ A} since N ⊆ {(A, x)|
(a, x) ∈ deriveBi (N) for some a ∈ A} and the same rules apply over deriveBi (N).
Actually, it needs to be shown that if (a, x) ∈ deriveBi (N), then deriveBi (N) =
deriveBi (N ∪ {(a, x)}) holds for deriveBi .

Appendix C

Proof for Theorem 5

See [110, 52].

Proof for Theorem 6

Here is the proof for the case of i = 1.

• Suppose that (φ, ψ) ∈ derive
Fm(X)
1 (N). For an arbitrary valuation V

and arbitrary Boolean algebra B ∈ BA, it needs to be shown that
V (ψ) ∈ outB1 (N

V , {V (φ)}). The proof is by induction on the length of

the proof (φ, ψ) ∈ derive
Fm(X)
1 (N).

Base case: If (φ, ψ) ∈ N , then (V (φ), V (ψ)) ∈ NV by definition, and
we have V (ψ) ∈ outB1 (N

V , {V (φ)}).
Inductive step: It is shown that for n > 0, if V (ψ) ∈ outB1 (N

V , {V (φ)})
holds for n, then V (ψ) ∈ outB1 (N

V , {V (φ)}) also holds for n+ 1.

Suppose that the length of proof (φ, ψ) ∈ derive
Fm(X)
1 (N) is n + 1.

There are two possibilities:

– Using SI in the last step: There is ϕ such that (ϕ, ψ) ∈
derive

Fm(X)
1 (N) and φ ⊢C ϕ. In this case, by the induction step

we have V (ψ) ∈ outB1 (N
V , {V (ϕ)}), and by the completeness of

the simple-minded operation we have (V (ϕ), V (ψ)) ∈ deriveB1 (N).
Since φ ⊢C ϕ, then by Theorem 5 we have φ ⊨BA ϕ. So
V (φ) ∧ V (ϕ) = V (φ). Then from (V (ϕ), V (ψ)) ∈ deriveB1 (N)
and V (φ) ≤ V (ϕ) using the SI rule we have (V (φ), V (ψ)) ∈
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deriveB1 (N), and by the soundness of the simple-minded opera-
tion we have V (ψ) ∈ outB1 (N

V , {V (φ)}).
– Using WO in the last step: There is ϕ such that (φ, ϕ) ∈
derive

Fm(X)
1 (N) and ϕ ⊢C ψ. In this case, by the induction step

we have V (ϕ) ∈ outB1 (N
V , {V (φ)}), and by the completeness of

the simple-minded operation we have (V (φ), V (ϕ)) ∈ deriveB1 (N).
Since ϕ ⊢C ψ, then by Theorem 5 we have ϕ ⊨BA ψ. So
V (ϕ) ∧ V (ψ) = V (ϕ). Then from (V (φ), V (ϕ)) ∈ deriveB1 (N)
and V (ϕ) ≤ V (ψ) using the WO rule we have (V (φ), V (ψ)) ∈
deriveB1 (N), and by the soundness of the simple-minded opera-
tion we have V (ψ) ∈ outB1 (N

V , {V (φ)}).

• The proof in the other direction is by contraposition. Suppose that
(φ, ψ) /∈ derive

Fm(X)
1 (N), if Fm(X) is taken as a Boolean algebra, then

by the completeness of derive
Fm(X)
1 (N), we have ψ /∈ out

Fm(X)
1 (N, {φ}).

Then it is enough that the valuation function is put as the identity
function on the Boolean algebra Fm(X) which means

ψ /∈ out
B=Fm(X)
1 (N, {φ}).

The proof is similar for the other derivation systems: derive
Fm(X)
R (N),

derive
Fm(X)
L (N), derive

Fm(X)
I (N), derive

Fm(X)
II (N), derive

Fm(X)
2 (N), and

derive
Fm(X)
3 (N).

Proof for Theorem 7

• The proof from right to left is similar to Theorem 6. It just needs to
be checked that for the case when AND is the last step of the deriva-
tion, that there are δ1 and δ2 such that (φ, δ1), (φ, δ2) ∈ deriveAND

i (N)
and ψ = δ1 ∧ δ2. In this case, by the induction step we have V (δ1) ∈
outAND

i (NV , {V (φ)}) and V (δ2) ∈ outAND
i (NV , {V (φ)}). By Theo-

rem 2, we have (φ, δ1) ∈ deriveAND
i (N) and (φ, δ2) ∈ deriveAND

i (N).
Then by using the AND rule, we have (φ, δ1 ∧ δ2) ∈ deriveAND

i (N),
and then by Theorem 2, we have V (ψ) ∈ outAND

i (NV , {V (φ)}).

• The proof in the other direction is by contraposition. Suppose that
(φ, ψ) /∈ deriveAND

1 (N), if Fm(X) is taken as a Boolean algebra, then
by Theorem 2, we have ψ /∈ outAND

1 (N, {φ}), then if the valuation
function is put as the identity function on the algebra Fm(X), we have
ψ /∈ outAND

1 (N, {φ}).
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It is possible to extend the proof for the arbitrary input set Γ ⊆ Fm(X) and
to extend this theorem for other addition rule operators.

Proof for Theorem 8

• From left to right: Suppose that (φ, ψ) ∈ deriveCon
i (N), then by

definition, (φ, ψ) ∈ derive
Fm(X)
i (N) and Con, ψ ⊬C⊥. From The-

orem 6 we have “V (ψ) ∈ outBi (NV , {V (φ)}) for every B ∈ BA
and valuation V ”, and from Theorem 5 there is a Boolean algebra
B such that Con, ψ ⊭B⊥. So there is a valuation V on B such that
∀δ ∈ Con, V (δ ∧ ψ) = 1B.

• The proof from right to left is similar.

By the definition of deriveCon
i (N), it is possible to extend the theorem for

the case of (Γ, ψ) ∈ deriveCon
i (N) where Γ ⊆ Fm(X).

Proof for Theorem 9

• From left to right: Suppose that φ ↪→ ⃝ψ ∈ deriveO
H

i (N), by defini-

tion, (φ, ψ) ∈ derive
Fm(X)
i (N) and from Theorem 6, we have “V (ψ) ∈

outBi (N
V , {V (φ)}) for every B ∈ BA and valuation V ”. For the second

part, notice that every maximal consistent subset defines a valuation
and vice versa. So “∀M ∈ optf (φ)(ψ ∈ M)” is equivalent to that for
any valuation Vi ∈ opt⪰f

(φ), so that we have Vi(ψ) = 1B and vice versa.

• From right to left, the proof is similar.

By the definition of deriveO
H

i (N), it is possible to extend the theorem for
the case of Γ ↪→ ⃝ψ ∈ deriveO

H

i (N) where Γ ⊆ Fm(X).
For another formulation of the theorem, it’s important to note that if

Vi ∈ opt⪰f
(φ) in ⟨2,V ,⪰f⟩, then we have Vi ∈ opt⪰f

(φ) in every preference
Boolean algebra ⟨B,V ,⪰f⟩.

Proof for Theorem 10

• From left to right: Suppose that (φ, ψ) ∈ deriveO
K

i (N), by defini-

tion, (φ, ψ) ∈ derive
Fm(X)
i (N) and from Theorem 6 we have “V (ψ) ∈

outBi (N
V , {V (φ)}) for every B ∈ BA and valuation V ”. For the second

part, notice that every maximal consistent subset defines a valuation
and vice versa. So “∀M ∈ optfA(φ)(ψ ∈ M)” is equivalent to that
for any valuation Vi ∈ opt⪰A

(φ), so that we have Vi(ψ) = 1B and vice
versa.
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• From right to left, the proof is similar.

By the definition of deriveO
K

i (N), it is possible to extend the theorem for
the case of Γ ↪→ ⃝ψ ∈ deriveO

K

i (N) where Γ ⊆ Fm(X).
For another formulation of the theorem, it’s important to note that ac-

cording to the definition of optfA(φ), ψ must be included in all maximal
consistent subsets that include both A and φ, or if φ is inconsistent with A,
in all maximal consistent subsets that include φ.

Appendix D

Proof for Lemma 1

The proof is straightforward. For example, for COM∨ we have the fol-
lowing: COM∨:

For all a, b ∈ Di: I ∨i�i�i a b = I ∨i�i�i b a
(from the definition of I∨i�i�i and ∨ )

⇔ For all assignments g, for all a, b ∈ Di

∥X ∨ Y = Y ∨X∥HM ,g[a/Xi][b/Yi] = T

⇔ For all g, we have ∥∀X∀Y (X ∨ Y = Y ∨X)∥HN ,g = T
⇔ HN |=HOL COM∨

Proof for Lemma 2

Fact: notice that for all φ ∈ Fm(X) and for all assignments g by induc-
tion on the structure of φ, we have ∥⌊φ⌋∥HN ,g = V (φ).

For simplification, the term abbreviations are used for the saturated set,
the ≤ ordering and upward set. It is easy to see that these terms abbrevia-
tions have the same corresponding sets in the corresponding Henkin model
as in the Boolean algebra.

Here then is the proof:

(d1(N))

∥⌊d1(N)(φ, ψ)⌋∥HN ,g = T

⇔ ∥(⃝1(N)τ�τ{⌊φ⌋})⌊ψ⌋∥H
N ,g = T

⇔ ∥(λAτλXi(∃U (∃Y (∃Z (AZ ∧ Z ≤ Y

∧N Y U ∧ U ≤ X)))){⌊φ⌋})⌊ψ⌋∥HN ,g = T
⇔ ∥(λXi(∃U (∃Y (∃Z ({⌊φ⌋}Z ∧ Z ≤ Y

∧N Y U ∧ U ≤ X)))))⌊ψ⌋∥HN ,g = T
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⇔ ∥∃U (∃Y (∃Z ({⌊φ⌋}Z ∧ Z ≤ Y ∧N Y U ∧ U ≤ ⌊ψ⌋)))∥HN ,g = T

⇔ ∥∃U (∃Y ( ⌊φ⌋ ≤ Y ∧N Y U ∧ U ≤ ⌊ψ⌋))∥HN ,g = T
⇔ There are elements b and c such that b, c ∈ Di and

∥⌊φ⌋ ≤ Y ∧N Y U ∧ U ≤ ⌊ψ⌋∥HM ,g[b/Ui][c/Yi] = T
⇔ There are elements b, c ∈ B such that

V (φ) ≤ c ∧NV c b ∧ b ≤ V (ψ)
⇔ V (ψ) ∈ Up(NV (Up({V (φ)})))
⇔ V (ψ) ∈ outB1 (N

V , {V (φ)})

(d2(N))

∥⌊d2(N)(φ, ψ)⌋∥HN ,g = T

⇔ ∥(⃝2(N)τ�τ{⌊φ⌋})⌊ψ⌋∥H
N ,g = T

⇔ ∥(λAτλXi(∀V (Saturated V ∧ ∀U(AU → V U)

→ ∃Y (∃Z (Z ≤ X ∧N Y Z ∧ V Y )))){⌊φ⌋})⌊ψ⌋∥HN ,g = T
⇔ ∥(λXi(∀V (Saturated V ∧ ∀U({⌊φ⌋}U → V U)

→ ∃Y (∃Z (Z ≤ X ∧N Y Z ∧ V Y )))))⌊ψ⌋∥HN ,g = T
⇔ ∥∀V (Saturated V ∧ ∀U({⌊φ⌋}U → V U)

→ ∃Y (∃Z (Z ≤ ⌊ψ⌋ ∧N Y Z ∧ V Y )))∥HN ,g = T
⇔ There are elements b and c such that b, c ∈ Di and

∥∀V (Saturated V ∧ ∀U({⌊φ⌋}U → V U)

→ (Z ≤ ⌊ψ⌋ ∧N Y Z ∧ V Y ))∥HN ,g[b/Yi][c/Zi] = T
⇔ For every saturated set V that {V (φ)} ⊆ V ,

there are elements b, c ∈ B such that
c ≤ V (ψ) ∧NV b c ∧ V b

⇔ For every saturated set V such that {V (φ)} ⊆ V ,
we have V (ψ) ∈ Up(NV (V )))

⇔ V (ψ) ∈ outB2 (N
V , {V (φ)})

(d3(N))

∥⌊d3(N)(φ, ψ)⌋∥HN ,g = T

⇔ ∥(⃝3(N)τ�τ{⌊φ⌋})⌊ψ⌋∥H
N ,g = T

⇔ ∥(λAτλXi(∀V (∀U(AU → V U) ∧ V = UpV
∧∀W (∃Y (V Y ∧N Y W ) → V W )

→ ∃Y (∃Z (Z ≤ X ∧N Y Z ∧ V Y )))){⌊φ⌋})⌊ψ⌋∥HN ,g = T
⇔ ∥(λXi(∀V (∀U({⌊φ⌋}U → V U) ∧ V = UpV
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∧∀W (∃Y (V Y ∧N Y W ) → V W )

→ ∃Y (∃Z (Z ≤ X ∧N Y Z ∧ V Y )))))⌊ψ⌋∥HN ,g = T
⇔ ∥∀V (∀U({⌊φ⌋}U → V U) ∧ V = UpV

∧∀W (∃Y (V Y ∧N Y W ) → V W )

→ ∃Y (∃Z (Z ≤ ⌊ψ⌋ ∧N Y Z ∧ V Y )))∥HN ,g = T
⇔ There are elements b and c such that b, c ∈ Di and

∥∀V (∀U({⌊φ⌋}U → V U) ∧ V = UpV
∧∀W (∃Y (V Y ∧N Y W ) → V W )

→ (Z ≤ ⌊ψ⌋ ∧N Y Z ∧ V Y ))∥HN ,g[b/Yi][c/Zi] = T
⇔ For every set V that Up(V ) = V , {V (φ)} ⊆ V and NV (V ) ⊆ V ,

there are elements b, c ∈ B such that
c ≤ V (ψ) ∧NV b c ∧ V b

⇔ For every set V that Up(V ) = V , {V (φ)} ⊆ V and NV (V ) ⊆ V ,
we have V (ψ) ∈ Up(NV (V )))

⇔ V (ψ) ∈ outB3 (N, {V (φ)})

Proof for Lemma 3

Suppose that H = ⟨{Dα}α∈T , I⟩ is a Henkin model such that H |=HOL Σ
for all Σ ∈ {COM∨, ..., Dis∧∨}. Without loss of generality, it can be
assumed that the domains of H are denumerable [75]. The corresponding
Boolean normative model N is constructed as follows:

• B = Di.

• 1 = I⊤i.

• 0 = I⊥i.

• a ∨ b = c for a, b, c ∈ B iff I ∨i�i�i ab = c.

• a ∧ b = c for a, b, c ∈ B iff I ∧i�i�i ab = c.

• a = ¬b for a, b ∈ B iff I¬i�ia = b.

• The valuation on B is defined such that for all pj ∈ X, V (pj) = I(pji ).

• (a, b) ∈ NV for a, b ∈ B iff INi�τab = T .

Since H |=HOL Σ for all Σ ∈ {COM∨, ..., Dis∧∨}, it is straightforward
(but tedious) to verify that ∧, ∨, ¬, 0 and 1 satisfy the conditions required
for a Boolean algebra.

Moreover, the above construction ensures that H is a Henkin model HN

79



for Boolean normative model N . Hence, Lemma 2 applies. This ensures that
for all conditional norms (φ, ψ), and for all assignment g, we have:

∥⌊di(N)(φ, ψ)⌋∥H,g = T if and only if V (ψ) ∈ outBi (N
V , {V (φ)}).

Proof for Theorem 11

Soundness

The proof is by contraposition. Suppose that for a Boolean normative
model ⟨B, V,NV ⟩, we have V (ψ) /∈ outBi (N

V , {V (ψ)}). Now let HN be a
Henkin model for Boolean normative model N . Then by Lemma 2 for
an arbitrary assignment g, it is held that ∥⌊di(N)(φ, ψ)⌋∥HN ,g = F , but
∥COM ∨ ∥HN ,g = T , ..., ∥Dis ∧ ∨∥HN ,g = T , and that is a contradiction.

Completeness

The proof is again by contraposition. If it is assumed that
{COM∨, ..., Dis∧∨} ⊭HOL ⌊di(N)(φ, ψ)⌋, then there is a Henkin model
H = ⟨{Dα}α∈T , I⟩ such that H |=HOL Σ for all Σ ∈ {COM∨, ..., Dis∧∨},
but ∥⌊di(N)(φ, ψ)⌋∥H,g = F for some assignment g. By Lemma 3, there is a
Boolean normative model N such that V (ψ) /∈ outBi (N

V , {V (φ)}), and that
is a contradiction.
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